Podcast Mundo de los Microbios

Episodio 53

A continuacion: Piel artificial en la lucha contra la infección, ratones como quimeras humanas, y virus transmitidos por artrópodos.

Piel artificial en la lucha contra la infección

Las víctimas con quemaduras graves que precisan   de injertos de piel están expuestas a infecciones mortales. Sin embargo los investigadores que estudian el problema de las quemaduras han encontrado, mediante técnicas de ingeniería genética, la manera de conferir a las células de la piel mayor resistencia contra las infecciones bacterianas que la que tienen las células normales. El elemento clave es una proteína llamada defensina beta-cuatro humana. Esta proteína no se encuentra normalmente en la piel pero es una parte del sistema inmunitario humano.

El tratamiento estándar en pacientes con quemaduras es hacer injertos de piel tomada de un área intacta del propio cuerpo. Cuando los pacientes han sufrido quemaduras terribles, hay que cultivar piel a partir de células de cualquier pequeña parte no afectada que exista. Pero se requiere tiempo hasta que las células se desarrollen y puedan ser injertadas en el paciente. Mientras tanto, esos pacientes están expuestos a infecciones que pueden ser mortales.

Para hallar una forma de reducir dichas infecciones se ha aislado un gen que codifica una proteína llamada defensina beta 4 humana, o (abreviado de la denominación inglesa) H-B-D-4.

Dorothy Supp, investigadora del Hospital Infantil Shriners de Cincinnati, dice que cuando las células epiteliales normales tratadas con H-B-D-4 se exponen a la acción de microbios que provocan infecciones comunes, esas células alteradas genéticamente luchan mejor contra la infección.

Supp explica que están considerando este resultado como prueba de una alternativa en el control de la infección que podría reducir la dependencia de productos antimicrobianos tópicos.

Ratones como quimeras humanas

En la mitología griega una quimera es un monstruo femenino que respira fuego y tiene cabeza de león, cuerpo de cabra y cola de serpiente, pero los ratones de un laboratorio de Dallas también son quimeras ─ ratones implantados con tejidos humanos y con células sanguíneas humanas. Puede que no sean Mighty Mouse (Super Ratón), pero su sistema inmune responde a las infecciones como lo hace el de los humanos y esto los convierte en modelos ideales para el estudio de las enfermedades infecciosas.

Victor García-Martínez, catedrático de la Universidad del Centro Médico del Sudoeste de Texas en Dallas, afirma que los ratones ofrecen a los científicos la posibilidad de probar nuevas vacunas, nuevos fármacos y nuevos inhibidores de la transmisión de los virus.

Los ratones normales no son sensibles a virus humanos, tales como el VIH y el virus de Epstein Barr, pero los colegas de García-Martínez en Tejas y en la Universidad de Minnesota han desarrollado los primeros ratones de laboratorio con un conjunto completo de células inmunitarias humanas.

Estas quimeras de ratón-hombre producen en abundancia células T (que luchan contra la infección) en respuesta a virus específicos de humanos, de la misma forma que lo hace el sistema inmunitario de los seres humanos.

Para crear semejante ratón los investigadores implantan células T de tejido humano y células madre sanguíneas en ratones inmunodeficientes, que no pueden rechazarlas. El resultado es un modelo vivo con el que podemos buscar tratamientos para toda clase de patógenos de humanos, desde el VIH hasta el del carbunco.

Virus transmitidos por artrópodos

Los artrópodos son lo que mucha gente llama “bichos” o “insectos” y pueden transportar algunos patógenos bastante virulentos, tales como los virus responsables de la fiebre amarilla, del dengue, y de la encefalitis japonesa. Hoy en día las enfermedades transmitidas por artrópodos se expanden rápidamente, llevando nuevos casos a lugares que antes estaban a salvo.

El virus del oeste del Nilo es un ejemplo claro de la forma en que los virus transmitidos por artrópodos se están desplazando a nuevos territorios. Diane Griffin, catedrática de la Escuela de Salud Pública de la Universidad Johns Hopkins, afirma que el virus del oeste del Nilo atravesó el Atlántico y aterrizó en la ciudad de Nueva York.

Griffin subraya que lo que más sorprendió a todo el mundo fue la rapidez con que se extendió a través del continente. El virus fue introducido en 1999, y en 2004 había alcanzado la costa del Pacífico. Actualmente se está expandiendo por Canadá y América del Sur.

En opinión de Griffin, los virus transmitidos por artrópodos, como el del oeste del Nilo, están proliferando en nuevos lugares en parte porque los mosquitos y otros insectos pueden viajar fácilmente como polizones en aviones y barcos. En otros casos, los cambios en el uso de la tierra han abierto nuevas localizaciones donde los artrópodos pueden vivir y adonde han traído los virus y enfermedades que transportan con ellos.

La traducción al español ha sido una gentileza de la Sociedad Española de Microbiología, www.semicro.es.

Episodio 52

A continuacion: El etanbutol y la tuberculosis resistente a los fármacos, Los enterococos y la comida rápida, La resistencia a los antibióticos en los pingüinos.

El etanbutol y la tuberculosis resistente a los fármacos
El etanbutol es un potente fármaco para luchar contra la tuberculosis, pero si no se utiliza de forma apropiada la bacteria causante de esta enfermedad se puede volver resistente al mismo. El tratamiento de la tuberculosis resistente es difícil y costoso.  Se ha descubierto que la bacteria resistente al etanbutol causa daños más severos al pulmón que la tuberculosis normal. Es importante que los pacientes de tuberculosis sean controlados. Si un paciente no responde a los fármacos tradicionales en seis semanas, debe comprobarse la presencia de bacterias resistentes. 

Los enterococos y la comida rápida
Los enterococos son unas bacterias que viven en el intestino humano y que normalmente son beneficiosas. Sin embargo, algunas veces, pueden producir enfermedades graves en personas inmunocomprometidas. Se ha detectado la presencia de enterococos resistentes a los antibióticos en la comida de algunos restaurantes de comida rápida, especialmente en alimentos crudos, tales como frutas y verduras. Por esto, antes de ingerir productos frescos es importante lavarlos siempre a fondo.

La resistencia a los antibióticos en los pingüinos
El uso de los antibióticos ha aumentado la resistencia a los fármacos entre los patógenos humanos. A fin de entender cómo las bacterias han desarrollado mecanismos de defensa tan elaborados, científicos viajaron a la Antártica donde el tiempo, de alguna manera, está congelado. Allí, se encontró que la resistencia a los antibióticos entre los microorganismos que infectan a los pingüinos es bastante alta. Esto puede estar más relacionado con la fisiología de estas aves que con su exposición a los antibióticos. El uso de los antibióticos en la Antártica ha sido mínimo pero, incluso allí donde el tiempo parece inmutable, los microorganismos nos llevan ventaja.

Episodio 51

A continuacion: Conan la bacteria; saliva para crear vacunas; bacterias que aportarán energía para el futuro; y fibrosis cística e infección pulmonar.

Conan la bacteria
Deinococcus radiodurans es una bacteria capaz de soportar dosis de radiación superiores a la que podemos aguantar los humanos, así como condiciones de sequedad extrema. Normalmente, las dosis elevadas de radiación dañan el ADN, pero D. radiodurans repara su propio ADN. Además, protege sus proteínas mediante la acumulación de manganeso. Este elimina los radicales libres que dañan las proteínas. Se están investigando los compuestos de manganeso presentes en esta bacteria, con el fin de encontrar nuevas formas de proteger las células humanas contra el daño que causan la radioterapia, las radiaciones cósmicas e incluso el proceso de envejecimiento.

Saliva para crear vacunas
Se piensa que las picaduras pueden ayudar a prevenir la malaria y otras enfermedades. Se ha encontrado que la gente que vive en regiones donde la malaria es endémica tiene menos probabilidad de resultar infectada. Y si contraen la enfermedad, posiblemente no será muy grave. La clave es la saliva de los mosquitos no infectados, que activa el sistema inmune, ayudándolo a combatir la enfermedad. Cuando se haya averiguado por qué la saliva de los insectos estimula el sistema inmunitario, ésta podrá formar parte de futuras vacunas contra la malaria y otras enfermedades transmitidas por los mosquitos.

Bacterias que aportarán energía para el futuro
Las células electrolíticas catalizan reacciones químicas que generan electricidad. Se está trabajando en la creación de una célula electrolítica biológica, que utiliza enzimas bacterianas para producir electricidad. A diferencia de las células electrolíticas estándar, las biológicas no necesitan platino, que es costoso, ni la membrana para que haya intercambio de protones. Por ahora, podrían utilizarse en dispositivos eléctricos de poca potencia, pero más adelante podrían cubrir nuestras necesidades de mayor potencial eléctrico.

Fibrosis cística e infección pulmonar.
Los enfermos de fibrosis cística sufren infecciones crónicas de los pulmones, producidas por la bacteria Pseudomonas aeruginosa. Luchar contra estas es difícil, ya que cuando P. aeruginosa se aloja en el pulmón puede experimentar sucesivos cambios a lo largo del tiempo. Para estudiar estos cambios, se infectaron ratones con muestras diferentes de la bacteria, tomadas de un paciente durante veintitrés años. Se encontró que la virulencia de la bacteria dependía de la fase de la infección y de si su fenotipo era del tipo mucoide. Se espera que el nuevo modelo con ratones permita diseñar tratamientos adecuados a cada caso utilizando los antibióticos existentes, y ayude a desarrollar nuevos tratamientos. 

Episodio 50

A continuacion: Comunicación entre médicos y veterinarios; comportamiento peligroso en el zoo para niños; carne de vaca irradiada; y más allá del test del olfato.

Comunicación entre médicos y veterinarios


En los orígenes de la medicina moderna los veterinarios y los médicos solían hablar entre ellos sobre las zoonosis, enfermedades infecciosas que pueden afectar tanto a los seres humanos como a los animales. Pero con el paso del tiempo, esta comunicación ha ido desapareciendo. Esta falta de comunicación podría convertirse en un problema si nos ataca una zoonosis, ya que la mayoría de los patógenos están igual de dispuestos a infectar a un animal o a un humano. Para controlar estas infecciones, debemos desterrar la idea de que estas enfermedades son de alguna forma diferentes en humanos y en animales.

Comportamiento peligroso en el zoo para niños


Aunque los zoológicos para niños parecen inofensivos, contienen un mundo microscópico con potencial peligro para sus visitantes, que consiste en la posible transmisión de patógenos entéricos desde los animales a los humanos. Las enfermedades entéricas se propagan mediante la ingestión accidental de las heces de los animales. Acariciar a los animales y comer después sin haberse lavado las manos, incrementa el riesgo de transmisión. Pero según un estudio de supervisión, el 28% de las personas que salen del zoológico no se lavan las manos. Siempre y cuando los padres sean conscientes de los riesgos y sigan las indicaciones, visitar un zoológico puede ser una experiencia muy alegre y segura para los niños.

Carne de vaca irradiada


La carne de vaca irradiada es algo que muchos consumidores tienden a rehuir. Algunos dicen que la alta energía que necesitan los procesos con elevado poder de penetración hace que la carne sepa y huela de una forma poco agradable. Se ha demostrado que dosis bajas de radiación también son eficaces para eliminar a los microorganismos y no tienen  efectos adversos en el sabor del producto. Sin embargo, es aconsejable cocinar siempre a fondo la carne de vaca hasta que alcance una temperatura de 160 grados Fahrenheit en su interior.

Episodio 49

A continuación: Una reliquia microbiana, azoles contra la tuberculosis, la carrera de microbiología clínica, y contribución de las algas a un nuevo planeta.

Una reliquia microbiana

El cuerpo humano está lleno de millones y millones de microorganismos y aunque algunas bacterias van y vienen otras son como los genes que pasan a ti a través del árbol familiar.

Page Caufield, catedrático del Colegio Universitario de Odontología de la Universidad de Nueva York, investiga sobre Streptococcus mutans, una bacteria que vive en la boca humana y que a menudo hace que los dientes se piquen. Cuafield sabía que esta bacteria coloniza la boca poco después del nacimiento pero ignoraba  de donde procedía.

Estudió la transmisión desde la madre y desde el padre al bebé y encontró que sólo las madres estaban implicadas en dicha transmisión.

Y lo que es muy interesante es que Caufield descubrió que la transferencia del microbio de madre a hijo eran un hecho tan consistente que podía servir para rastrear el movimiento de nuestros antepasados a través del globo. Comparando el DNA de Streptococcus mutans de gente por todo el mundo, Caufield y su equipo identificaron varios linajes distintos de la bacteria.

Caufield cree que la distribución geográfica de esta bacteria es un reflejo de la migración del homo sapiens desde el corazón de la antigua África, demostrando que Streptococcus mutans ha evolucionado con los humanos. Por lo tanto este microorganismo, más que un huésped temporal, es una herencia familiar.

Azoles contra la tuberculosis

Aunque tanto los hongos como las bacterias pueden causar enfermedades en los humanos, son microbios muy diferentes. Históricamente los fármacos contra las infecciones fúngicas raramente han tenido efecto sobre las bacterias – hasta ahora. Unos científicos han descubierto una droga que mata indistintamente a los hongos y ciertas cepas Mycobacterium tuberculosis.

Andrew Munro, catedrático de la Universidad de Manchester en Inglaterra, ha estudiado junto con sus colegas el genoma de la bacteria de la tuberculosis. Durante su estudio comprobaron con sorpresa que dicha bacteria tenía componentes similares a los de los hongos – componentes que eran sensibles a unos fármacos antifúngicos llamados azoles. Munro dice que los resultados de las pruebas de laboratorio parecen prometedores. Han podido demostrar que algunos azoles son compuestos muy efectivos para destruir los cultivos en placa de la bacteria de la tuberculosis.

Munro sospecha que éste podría ser el talón de Aquiles de Mycobacterium tuberculosis.

En los últimos años la tuberculosis se ha convertido en un problema muy serio en todo el mundo debido al número creciente de enfermos de SIDA, quienes son especialmente sensibles a esta enfermedad. Además muchas de las cepas que causan la tuberculosis se han vuelto resistentes a los fármacos antibacterianos. Los azoles son altamente letales para Mycobacterium tuberculosis y esta debilidad del microorganismo puede ser un adelanto importantísimo para los médicos que tienen que enfrentarse a las infecciones resistentes.

La carrera de microbiología clínica

Los microbiólogos clínicos trabajan entre bastidores en los hospitales y las clínicas para mantener tu salud y la de la comunidad. Richard Thomson, director de Microbiología y Virología en el centro hospitalario Evanston Northwestern en Illinois, dice que los laboratorios de microbiología clínica de los hospitales ayudan a diagnosticar y ofrecen consejo para tratar tanto los casos corrientes de faringitis estreptocócica como infecciones más peligrosas, tales como la meningitis.

Thomson dice que el papel del laboratorio clínico es detectar el organismo que está causando una infección. Los médicos envían la muestra al laboratorio; allí se hacen las pruebas y después se informa de cuál es el microorganismo que está causando la infección y de cómo tratarla.

Los laboratorios de microbiología clínica emplean técnicos, que necesitan sólo un par de años de formación superior; tecnólogos, que tienen una licenciatura de cuatro años; y directores, que se han licenciado o doctorado en medicina. Thomson afirma que la microbiología clínica puede ser una carrera apasionante.

Relaciona el trabajo de microbiólogo clínico con los programas de crímenes que se ven en televisión, en los cuales dispones de algunas pistas y tienes que discurrir y trazar un plan para averiguar qué organismo es y con qué antibióticos vas a combatirlo.

Contribución de las algas a un nuevo planeta

Los científicos conocen desde hace tiempo que las algas son responsables de la producción del oxígeno que a su vez dio lugar a la aparición de los animales pluricelulares. Ahora Pekka Jaunhunen, del Instituto de Meteorología finlandés ha descubierto otra importante pieza del puzzle.

Cuando la luz del sol comenzó a Incrementarse hace aproximadamente dos mil millones de años, la Tierra empezó a calentarse, lo que dio lugar a una serie de eventos que hicieron disminuir la cantidad de dióxido de carbono de la atmósfera. A medida que la Tierra se enfriaba, debido a la disminución del CO2, la diferencia de temperatura entre las regiones polares y ecuatoriales comenzó a incrementarse, hasta que se inició por primera vez la congelación del mar en las zonas polares. Janhunen dice que esto fue bueno para las algas.                        
Según él, la Tierra era casi un paraíso para ellas porque casi todos los océanos estaban mezclándose, haciéndose ricos en nutrientes y dando lugar a una alta tasa de crecimiento de las algas eucariotas.

Pero cuando las algas produjeron el oxígeno, éste trajo consigo la aparición de los organismos multicelulares quienes irónicamente comenzaron a alimentarse de las algas.

Janhunen dice que esto comenzó a incrementar la concentración de CO2 en la atmósfera, llevando a temperaturas más calidas, ocasionado que el mar de hielo se fundiera y una pobre circulación de nutrientes — lo que en última estancia causó un declive posterior de las algas, que es como la Tierra llegó a su clima moderno.

Episodio 48

A continuación: Identificando los patrones de la infección, ¿Los cuartos de baño están realmente tan sucios?, El alejamiento como medida preventiva de la enfermedad, y Detección precoz de florecimientos tóxicos de algas.

Identificando los patrones de la infección

Existen unos genes determinados en los glóbulos blancos que son activados según el tipo de bacteria o de virus con los que se enfrenten. Se cree que estos están programados para responder de manera diferente a las distintas infecciones. Se ha desarrollado una herramienta que analiza en una muestra qué genes están activos y proporciona la identidad del microorganismo que causa la infección. Esto representa un avance en el diagnóstico. Se espera que este sistema se pueda utilizar para el diagnóstico rápido de infecciones graves. 

¿Los cuartos de baño están realmente tan sucios?

Para comprobar la suciedad en las superficies de diferentes lugares, científicos tomaron muestras, buscando específicamente restos de fluidos corporales. Para su sorpresa, encontraron que los lugares más sucios fueron los patios de recreo y las guarderías, donde en casi la mitad de las muestras examinadas había restos de fluidos corporales. Sucedía lo mismo en uno de cada cuatro cuartos de aseo y en uno de cada cinco carritos del supermercado.

El alejamiento como medida preventiva de la enfermedad

El distanciamiento social podría ser una buena estrategia para evitar enfermarse. Este método tan sencillo podría ser un instrumento excelente para evitar acontecimientos tan graves como una pandemia de gripe. Es más probable contraer una enfermedad viral tal como la gripe al tocar una superficie contaminada y frotarse después los ojos, la nariz o la boca que si se respira el mismo aire que una persona infectada.

Detección precoz de florecimientos tóxicos de algas

Las toxinas producidas por los florecimientos de algas pueden envenenar los mariscos y provocar enfermedades e incluso la muerte de los depredadores que los consumen. De los dos métodos actuales para la detección de esos florecimientos, uno es lento y complicado y el otro impreciso desde el punto de vista numérico. Se están desarrollando métodos más sensibles y rápidos para localizar la presencia de los florecimientos de algas tóxicos. Estos permitirán detectar niveles muy bajos de la presencia de estas toxinas, antes de que causen un perjuicio económico en la producción costera.

Episodio 47

Las agujas limpias disminuyen la transmisión del VIH


Los programas de reemplazo de agujas ofrecen agujas limpias gratis a los adictos a las drogas por vía parenteral para que no compartan las agujas usadas y no contraigan el SIDA. Estos programas reducen el número de nuevos casos, pero a menudo son polémicos y difíciles de financiar con fondos federales. A quienes se oponen a ellos les preocupa que fomenten el consumo de las drogas. Pero estos programas, además, pueden ayudar a los adictos a deshabituarse de las drogas. La principales ciudades de los Estados Unidos cuentan con estos programas, pero al no tener apoyo federal tienen que depender de la financiación privada.

Tratamiento de las infecciones respiratorias


Las neumonías adquiridas en la comunidad son uno de los problemas médicos más comunes, pero sorprendentemente, existen pocas directrices para los médicos internistas sobre la duración de los tratamientos. Algunos médicos prescriben los antibióticos sólo durante cinco días, mientras que otros prolongan el tratamiento hasta dos semanas. Las medicaciones más largas pueden inducir la aparición de resistencias y si esta tendencia continúa, en el futuro no tendremos antibióticos eficaces frente a estos microorganismos.  Actualmente, se están desarrollando pautas para limitar el uso de antibióticos.

Pollos ecológicos resistentes a los antibióticos


Las granjas ecológicas no utilizan antibióticos para controlar las infecciones, por lo que se pensaba que en estos lugares no existían bacterias resistentes a estos fármacos. Sin embargo, se ha descubierto que incluso los pollos que nunca han sido tratados con antibióticos tienen bacterias resistentes a los más comunes. Esto sugiere que la prohibición de utilizar antibióticos en las granjas quizás no sea una medida tan eficaz y plantea un nuevo problema a los organismos reguladores de alimentos, que son responsables de garantizar la calidad sanitaria de las aves de corral criadas ecológicamente.

Prevención de las infecciones extra hospitalarias.


Es importante recordar que las medidas sencillas que se adoptan en el hogar, tales como lavarse las manos con frecuencia, evitar tocarse los ojos y la nariz y cubrirse la boca al toser o estornudar, pueden ser muy eficaces en la prevención de enfermedades comunes, como los resfriados y la gripe. Es especialmente importante limpiar con frecuencia los juguetes de los niños pequeños y otros objetos que puedan tocar o llevarse a la boca. De no hacerlo así, se estaría permitiendo que las enfermedades infecciosas pasaran libremente de un niño infectado a otro no infectado.  Aparentemente, así es como se transmiten muchas de estas infecciones.

Episodio 46

Los limpiadores del lago Soap
El lago Soap no cuenta con salidas de corrientes de agua. El único medio por el que se elimina el agua del lago es la evaporación, que deja en él las sales y los minerales. Esto ha causado una alta salinidad y ha favorecido el desarrollo de la bacteria Halomonas campisalis. Esta puede consumir nitratos y resistir altas concentraciones salinas y por esto es un agente natural capaz de eliminar residuos de fertilizantes y restos de explosivos. En el futuro este microorganismo podrá utilizarse como aditivo en los tratamientos de purificación de aguas residuales.
   
El oxígeno nos lo trajeron los microorganismos
En la Tierra primitiva la atmósfera contenía dióxido de carbono, que comenzó a ser utilizado por las cianobacterias para obtener nutrientes y energía, produciendo oxígeno. Otros microorganismos evolucionaron para utilizar el oxígeno. Científicos han encontrado que las comunidades microbianas que usaban el oxígeno se desarrollaron mucho antes de que éste se encontrara libre en la atmósfera, lo que demuestra que los microorganismos comenzaron a producir oxígeno hace dos mil setecientos millones de años, casi trescientos millones de años antes de lo que se pensaba hasta ahora.

Resolviendo problemas con los virus
El hierro se emplea con frecuencia para eliminar contaminantes del agua, pero se ha encontrado que también puede eliminar las bacterias e incluso los virus más pequeños. Cuando un virus entra en contacto con la superficie del hierro se adhiere a él y por consiguiente resulta eliminado del agua. El hierro neutraliza químicamente a los virus, privándoles de su capacidad infectiva. Igualmente, el uso del hierro puede mejorar la calidad del agua tratada con cloro, al extraer los ácidos orgánicos que pueden reaccionar con el cloro y formar compuestos tóxicos. Dado que esta tecnología es barata y simple, se ha propuesto el uso de filtros de hierro en los sistemas de filtración de agua.
 
La suciedad de la vajilla.
Se realizó un estudio en el que se ensuciaron utensilios de cocina con restos de alimentos y lápiz labial. Se dejó que los alimentos se secaran durante una hora y después limpió todo el menaje con agua caliente o con agua a temperatura ambiental. El resultado reveló que los restos de leche retenían la mayoría de las bacterias y que los contaminantes asociados al queso fueron los más difíciles de eliminar. Las manchas de lápiz labial evitaron el desarrollo de las bacterias, posiblemente debido a su contenido de compuestos antimicrobianos. Los lavavajillas domésticos pueden eliminar las bacterias siempre que se use agua caliente y se laven los platos inmediatamente después de su uso.

Episodio 45

La fiebre de los cereales
El auge del etanol como biocarburante ha desencadenado una mentalidad de “fiebre del oro” entre los productores del mismo. Esto puede no ser una buena noticia para los consumidores ya que el etanol se produce a partir de los cereales; para su cultivo se requieren grandes extensiones de terreno y los cereales se necesitan para otros fines como la alimentación del ganado y la elaboración de edulcorantes. No es posible pasar de la dependencia del petróleo a la del etanol sin un ajuste de los mecanismos económicos. Si alguna vez vamos a librarnos completamente de nuestra dependencia del petróleo extranjero, vamos a tener que recurrir a  la conservación y otras fuentes de energía alternativas.

Colonizando vejigas
Una infección en el tracto urinario puede representar un grave problema para personas con lesiones en la médula espinal y estas infecciones rara vez responden a los antibióticos orales. Para solucionar este problema, se están utilizando catéteres revestidos de una capa de bacterias inofensivas para tener la seguridad de que los microorganismos buenos colonicen la vejiga antes de que puedan alcanzarla los microorganismos dañinos. Este procedimiento ha tenido un gran éxito y se espera ampliar su uso en el futuro.

Tarjetas de memoria con virus
Se ha desarrollado un dispositivo electrónico de memoria a partir del virus del mosaico del tabaco. Este consiste en una mezcla de proteína viral con nano partículas, la cual se incrusta entre los electrodos. Los electrones se mueven entre las nano partículas y la proteína del virus cuando se aplica un voltaje, permitiendo que el chip se conecte y se desconecte. Actualmente, los científicos están trabajando para configurar un chip capaz de mantener la memoria durante más de diez años.

La fabricación de composta con gusanos como un arte
Amy Youngs, profesora de arte en la Universidad Estatal de Ohio, ha incorporado un sistema de compostaje a una mesa redonda artesanal. Este está formado por una bolsa de compostaje que cuelga bajo la mesa y a la que se pueden arrojar desperdicios. En la parte superior, las lombrices, cochinillas y bacterias descomponen los alimentos y la composta se desliza hasta el fondo de la bolsa. Una pantalla de cristal líquido en la parte superior de la mesa permite observar este proceso.

Episodio 44

Titulares: La salud del coral, censo de los microbios marinos, la gripe que viene del hielo, y microbios del infierno.

La salud del coral

Los científicos calculan que, debido a la contaminación producida por factores que van desde los residuos tóxicos y las bacterias patógenas hasta los barcos embarrancados y los proyectos urbanísticos en primera línea de mar, para el año 2030 el sesenta por ciento del coral del mundo habrá desaparecido. Pero si usted es un ávido submarinista o buceador, puede ayudar de manera muy sencilla a que esto no ocurra.
                                   
En el año 2003, la reserva natural marina de los Cayos de Florida cerró algunas zonas a nadadores y buceadores debido a una enfermedad bacteriana que mataba el coral asta de ciervo. Se creía que las personas podían difundir la enfermedad desde las zonas afectadas a las que no lo estaban.
                       
Los científicos pusieron a prueba esta teoría poniendo en contacto material de neopreno con tres tipos de bacterias que causan enfermedades en peces, en los corales y en las personas. Cuando se mantenía el neopreno colgado durante una hora para que se secase, algunas poblaciones de bacterias en su superficie incluso aumentaban.

Kay Marano-Briggs, profesora de la Universidad George Mason, dice que incluso después de haber secado durante dieciocho horas un traje de neopreno y haberlo enjuagado en agua dulce, en su superficie seguía habiendo cantidades significativas de bacterias.
                                           
Marano-Briggs explicó que necesitaba encontrar una respuesta positiva al problema, por lo que probó con una solución de lejía al 5 por ciento y eso mató prácticamente todas las bacterias.       
       
Ella sugiere que los buceadores laven sus trajes de neopreno con agua y lejía después de cada inmersión. Esta simple rutina ayudará a prevenir la dispersión de enfermedades en los arrecifes de coral, y prevendrá también infecciones de la piel.
 
Censo de los microbios marinos


Se calcula que un mililitro de agua de mar contiene aproximadamente un millón de células bacterianas y de diez a cien veces más virus. Si tenemos en cuenta que los mares y océanos ocupan las dos terceras partes de la superficie del planeta, y que el 90 por ciento de la biomasa marina es microbiana, las cifras son asombrosas.                                                       
Ahora, un equipo internacional de científicos está observando el conjunto de los microorganismos marinos. El trabajo forma parte de un gran proyecto subvencionado por la Fundación Sloan llamado “Censo de la Vida Marina”, que representa un esfuerzo para realizar un inventario de toda la vida marina. 
                                       
Los microbios desempeñan un papel vital en el mantenimiento de las condiciones climáticas adecuadas para la Tierra. Lo hacen al modificar la producción de gases de efecto invernadero, pero es sorprendente lo poco que se sabe todavía de esos microbios. Ante el panorama de una dinámica del clima que está cambiando, como es el calentamiento global, Lucas Stal, jefe del Departamento de Microbiología Marina del Instituto Holandés de Ecología, cree que nos queda mucho que aprender sobre el funcionamiento de los microbios en el océano.
                               
Stal cree que la investigación es interesante pero además, por el bien del planeta, es necesaria para comprender estos procesos.

La gripe que viene del hielo
                   
El cambio climático global alterará muchos aspectos de la vida en la Tierra, y también los microbios notarán los efectos. Se ha descubierto que la tendencia al calentamiento puede llegar incluso a despertar a los virus que viven en el hielo del Ártico de su letargo en el frío.
   
Scott Rogers, catedrático de la Universidad Estatal Bowling Green, en Ohio, ha estudiado la supervivencia de los virus de la gripe aviar transportados hacia el norte por las aves migratorias y congelados en los lagos siberianos. 
   
Rogers explica que los pájaros defecan sobre el hielo y que el hielo va cubriéndose de más nieve que se va convirtiendo en más hielo.

Ha encontrado que algunas cepas del virus de la gripe pueden sobrevivir en el hielo durante muchísimo tiempo. A medida que aumenten las temperaturas, el hielo de los lagos siberianos irá fundiéndose lentamente y se liberarán virus de la gripe y otros patógenos que hayan vivido atrapados en él durante largos periodos de tiempo.
   
Rogers y sus colegas tienen planeado investigar si los virus de la gripe procedentes del hielo fundido de lagos siberianos pueden infectar de nuevo a las aves después de haber estado congelados. Dice que es probable que también se liberen algunos patógenos humanos del hielo polar cuando éste se funda, pero cree que probablemente no serán una amenaza para la salud humana   

Microbios del infierno
                   
¿Quién necesita la cadena alimentaria cuando se puede vivir a base de agua, radiactividad y rocas a alta temperatura a unos tres mil metros de profundidad de la superficie de la Tierra? Pues bien, a unas bacterias primitivas pertenecientes al grupo de los Firmicutes les va muy bien con este menú más propio del infierno en las minas de oro más profundas y oscuras de Sudáfrica.
           
En algunos puntos de fractura que contienen agua a unos tres mil metros de profundidad de la superficie son abundantes algunos Firmicutes, que no se parecen a ningún otro microorganismo en el planeta. Viven de agua fósil de hace veinticinco millones de años, de radiactividad y de minerales que obtienen de rocas que están a temperaturas que alcanzan más de cincuenta grados Celsius.

Tullis Onstott, catedrático de ciencias de la Tierra en la Universidad de Princeton, que dirigió el grupo que investigaba estos microbios, dice que es posible que esto ocurra también en Marte, donde hay rocas del mismo tipo. Si hay también agua y radiactividad a esas profundidades significa que allí también existen los ingredientes para la vida. La incógnita es saber si la vida se originó en Marte y produjo tipos de organismos parecidos a los hallados en Sudáfrica.
           
Los Firmicutes son muy parecidos a las primeras bacterias que se originaron en la Tierra hace unos tres mil quinientos millones de años. Crecen muy lentamente y tardan en dividirse entre cincuenta y trescientos años.

Episodio 43

Titulares: vigilancia universal del MRSA, el poder del Shitake, transmisión de Clostridium difficile, y bacterias en las lentes de contacto.

Vigilancia universal del MRSA

Muchos países europeos han conseguido contener la infección de piel causada por M-R-S-A. Pero los Estados Unidos no han sido tan diligentes y las cotas de infección han llegado a niveles epidémicos. Lance Peterson es director del grupo de investigación de enfermedades infecciosas en Evanston Northwestern Healthcare y profesor en la Facultad de Medicina de la Northwestern University. Peterson dice que por cada paciente con infección por M-R-S-A en un hospital se gasta un promedio de cuarenta mil dólares adicionales. Pero existe una esperanza. Peterson ha dirigido una intervención en su hospital utilizando dos técnicas ─ un test rápido para detectar M-R-S-A en todos los pacientes hospitalizados y otro que analizaba los informes hospitalarios con el fin de seguir el progreso de las infecciones. Él afirma que el gasto de estas dos herramientas merece la pena tanto para la salud de los pacientes como desde el punto de vista económico. para conocer el coste final. Peterson cree que si los administradores de Salud Pública conocen estos hechos se darán cuenta de que por cada dólar gastado en estas nuevas tecnologías pueden reducir de manera notoria sus gastos en tratamientos innecesarios. Peterson espera que llegue el día en que estos métodos se utilicen en todos los hospitales de los Estados Unidos.

El poder del Shitake

Durante cientos de años la gente en Asía ha utilizado tónicos obtenidos a partir de extractos de setas para promover la salud y el bienestar. Preguntándose si existía algo de cierto detrás de esta creencia, científicos de la Ohio Wesleyan University decidieron investigar estos tónicos. El profesor Jann Ichida y sus colaboradores optaron por estudiar dos de estas setas y evaluar si en el laboratorio eran capaces de eliminar bacterias potencialmente patógenas. Ichida y su estudiante de licenciatura Ashley Gustin escogieron el Shitake, una conocida seta comestible, y el Reishi, otro ejemplar fibroso y no comestible. Utilizando técnicas tradicionales de preparación de extractos, cortaron las setas, las maceraron durante varias semanas en agua o alcohol, eliminaron el solvente por evaporación, y el residuo se puso en contacto con bacterias cultivadas en placas Petri. Tomaron extractos crudos y probaron sus efectos sobre bacterias de la piel, bacterias productoras de toxinas alimentarias y bacterias comunes del tracto intestinal. Los extractos del Shitake y del Reishi inhibieron el crecimiento de los tres tipos de bacterias, tanto las beneficiosas del tracto intestinal como las productoras de enfermedades. Ichida subraya que aunque los extractos de setas tengan actividad antibacteriana, una ingesta desproporcionada puede interferir con el funcionamiento normal de la biota intestinal y causar molestias estomacales.

Transmisión de Clostridium difficile

Clostridium difficile es una bacteria que frecuentemente infecta a los pacientes hospitalizados sometidos a un tratamiento con antibióticos. Esta bacteria, conocida como C. diff, causa diarrea que es usualmente tratada con antibióticos específicos. Pero el veinte por ciento de las infecciones causadas por esta bacteria son difíciles de combatir e incluso pueden ocasionar la muerte, añadiendo un coste adicional, además de complicar una estancia hospitalaria. C. diff se transmite por esporas que pueden contaminar las superficies de las mesas además de los instrumentos médicos. Robin Jump, una doctora del Hospital del Case Western Reserve University afirma que estas esporas son muy difíciles de destruir. La Dra. Jump ha descubierto que las esporas de este microorganismo son muy resistentes a los métodos normales de limpieza, y que los productos utilizados normalmente para eliminar las bacterias en los hospitales no las destruyen. Por otro lado, un estudio reciente ha identificado otro sistema de diseminación de C. diff. Además de las esporas, los pacientes infectados desprenden células vegetativas. La Dra. Jump dice que estas formas vegetativas pueden sobrevivir en condiciones similares a las del tracto digestivo. Ahora Jump quiere ver si las formas vegetativas juegan un papel importante en la diseminación de C. diff en el mundo real. Mientras tanto, opina que una buena higiene hospitalaria puede ayudar a reducir las infecciones.

Bacterias en las lentes de contacto

¿Cree usted que las lentes de contacto de uso prolongado están libres de bacterias? Probablemente no. Un estudio reciente en este tipo de lentes de contacto ha revelado la presencia de un número importante de especies bacterianas. Como era de esperar la bacteria más común fue un Staphylococcus que vive en la piel. Normalmente no es patógena, pero puede causar problemas en pacientes inmunodeprimidos. Más sorprendente ha sido, de acuerdo con Ejem Ahanotu, un microbiológo de la Constella Health Sciences en Stone Mountain, Georgia, descubrir la presencia de dos bacterias patógenas que pueden infectar los ojos y que nunca habían sido aisladas anteriormente en lentes de contacto. Ahanotu señala que las bacterias proceden de la contaminación de las soluciones de limpieza de las lentes de contacto. Los participantes en el estudio se quitaron y volvieron a poner las lentes varias veces durante un periodo de 30 días. Los resultados demostraron que en estas condiciones pueden contaminarse las lentes de uso prolongado. Ahanotu añade que es muy importante un cuidado y manejo adecuado de las mismas. Ahanotu recomienda asegurarse de que las soluciones de lavado de las lentes de contacto estén limpias, y que la caja en las que se guardan dichas lentes esté a su vez aseada y desinfectada, y nunca, nunca humedecer las lentes de contacto con saliva.

Episodio 42

Los temas que vamos a tratar esta semana son: digestión anaeróbica, transmisión viral, economía basada en el hidrógeno y, para terminar, productos lácteos endulzados con bacterias.

Digestión anaeróbica

¿Se han preguntado alguna vez qué le sucede a la basura en los vertederos? Los microorganismos se alimentan de residuos orgánicos, incluidos el papel y las sobras de comida, en un proceso denominado digestión anaeróbica. El producto final de la digestión anaeróbica es el biogas, un gas rico en el valioso metano.
   
Cuando se produce digestión anaeróbica en la naturaleza o en un vertedero, el biogas sube a la atmósfera. sin embargo, Ann Wilkie, catedrática asociada de ciencias del suelo y del agua de la universidad de Florida, afirma que los seres humanos podemos controlar la digestión anaeróbica para nuestro beneficio. La profesora Wilkie explica que los microbios son flexibles y que la digestión anaeróbica puede utilizarse para transformar todo tipo de residuos en biogas. 
   
Lo que hay que recordar, nos sigue diciendo, es que todos los residuos que produce nuestra sociedad son fuentes de energía en potencia.
   
La doctora Wilkie indica que la digestión anaeróbica ya se usa en muchas granjas lecheras para reciclar el estiércol y obtener biogas para electricidad y calefacción. Esto permite que las granjas reduzcan tanto su impacto medioambiental como sus facturas energéticas.

Transmisión viral

Cuando alguien se contagia de la gripe no suele pasar mucho tiempo hasta que el resto de personas que viven en la misma casa se enfermen  también. Esto se debe a que la gripe se transmite fácilmente entre los seres humanos. Sorprendentemente, sin embargo, nadie sabía con certeza cuánto tiempo tardaba una persona expuesta al virus en volverse contagiosa.                                   

Por esa razón el epidemiólogo Fabrice Carrat, junto con equipos del Ministerio Francés de Salud, recopiló datos de 62 estudios sobre la gripe. A partir de allí, el profesor Carrat descubrió que la transmisión del virus, o el momento en que una persona se vuelve infecciosa, puede empezar incluso un día después de la exposición al mismo, lo que hace que sea prácticamente imposible contener con eficacia un brote de gripe.         

Carrat descubrió que solamente el 60% de los individuos infectados desarrollarán síntomas clínicos, y que solo un 30% de los infectados desarrollarán síntomas graves. Indica que los casos invisibles, o sea, aquellos en los que los infectados no muestra síntomas, pueden complicar bastante los esfuerzos para aplicar tratamientos efectivos. 
               
Economía basada en el hidrógeno
   
Las reservas mundiales de petróleo no durarán para siempre, pero ¿con qué podemos sustituirlo? Algunos dicen que la respuesta está en el hidrógeno. El hidrógeno puede utilizarse en pilas de combustible para producir electricidad, pero fabricar hidrógeno no es fácil en absoluto: puede ser caro y en el proceso se puede gastar más energía de la que se conseguirá con el hidrógeno producido. 
   
Hay muchos tipos de bacterias que fabrican hidrógeno, pero el oxígeno las paraliza porque les resulta tóxico. Sin embargo, es difícil eliminar por completo el oxígeno de los reactores de hidrógeno. Pero Daniel Van Der Lelie (lay-lee), biólogo de los laboratorios nacionales de Brookhaven, afirma que ya están trabajando con una bacteria fabricante de hidrógeno llamada thermotoga neapolitana (ther-me-toe-gah nee-ah-paul-it-ann-uh) que es inmune a la presencia de oxígeno.
   
El doctor Van Der Lelie indica que la thermotoga neapolitana puede digerir residuos agrícolas y convertir materiales de desecho en energía. aunque esta bacteria probablemente no será útil en la producción a gran escala de hidrógeno, Van Der Lelie dice que podría ser muy útil en pequeñas instalaciones.

Productos lácteos endulzados con bacterias   

En los Países bajos hay científicos estudiando formas de alargar la fecha de caducidad y mejorar el sabor de los productos lácteos mediante la biotecnología. Con una pequeña modificación genética han conseguido invertir la acción natural del Lactococcus lactis (lack-toh-kock-tus lac-tis), un microbio usado comúnmente en la fermentación del queso y el suero de la leche. 
                               
Esta bacteria no patógena suele consumir glucosa, la molécula dulce de la lactosa o azúcar de la leche que es responsable de producir el ácido láctico que cuaja la leche. 
                               
El catedrático Oscar Kuiper (kye-pers), de la universidad de groningen (hroh-ning-in), explica que quiso invertir este proceso para que la bacteria consumiese la galactosa de la lactosa y secretase la glucosa.
                               
Cuando el microbio genéticamente alterado se come la galactosa, que es la otra mitad de la molécula de azúcar lactosa, y expele la glucosa, el resultado final es un endulzante natural. El proceso también pone en cuestión el uso de la lactosa y reduce su concentración, lo que es una ventaja potencial para las personas que son intolerantes a la lactosa.                                                             
Aunque esta técnica solo se ha empleado en laboratorios de investigación, el profesor Kuiper afirma que ofrece interesantes posibilidades para productos lácteos ácidos como el suero de leche y el yogurt.

Episodio 41

Los temas que vamos a tratar esta semana son: tendencias hereditarias a contraer infecciones cerebrales, convertir biomasa en hidrógeno, termitas que producen un combustible alternativo y, para finalizar, el bioetanol.

Tendencias hereditarias a contraer infecciones cerebrales

¿Tienen nuestros genes algo que ver con nuestra mayor o menor propensión a caer enfermos? Un grupo de científicos franceses cree que sí, pues han descubierto un gen que determina lo vulnerable que son los seres humanos a una rara infección cerebral.  

El virus del herpes simple, causante de lesiones herpeticas bucales, es muy abundante: ocho de cada diez personas son portadoras de este virus. Pero el herpes simple también es el causante de una devastadora forma de encefalitis. Jean-Laurent Casanova y sus colegas de la escuela médica Necker de París, Francia, observaron que aunque la encefalitis herpética es una enfermedad rara suele darse en los miembros de una misma familia.

Estos investigadores descubrieron que las personas cuyos padres son parientes, por lo general primos en primer o segundo grado, son más propensas a contraer la enfermedad, lo que demuestra que un gen fue responsable de establecer el nivel de vulnerabilidad a la misma. Otros trabajos han estudiado este gen anómalo y han descubierto que el organismo de las personas con dos copias de este gen no puede sintetizar una proteína denominada interferón tipo 1, una parte muy importante del sistema inmunitario. El profesor Casanova afirma que muy pronto los pacientes afectados de encefalitis herpética podrán ser tratadas con interferón tipo 1 para compensar esta desventaja genética y combatir la enfermedad.

Convertir biomasa en hidrógeno

A medida que aumenta la población global también se incrementa el consumo de energía. ¿Podemos producir energía suficiente para satisfacer estas necesidades en constante aumento? Con una ayudita de los microbios la respuesta podría ser "sí".            

Carrie Harwood, catedrática de microbiología de la universidad de Washington en Seattle, afirma que los microbios producen energía como un producto de desecho de su metabolismo. Sería ideal poder controlar su habilidad para realizar ese proceso porque es algo que los microbios no solo tienen que hacer, sino que quieren hacer todo el tiempo.                            

La doctora Harwood afirma que el gas hidrógeno es una molécula muy simple y lo pueden producir muchos tipos de microbios a partir de una serie de materias primas como la biomasa vegetal.              

El proceso de conversión tiene varios pasos que requieren la presencia de una comunidad de microbios. Harwood considera que pronto podrían desarrollarse procesos comerciales, como la conversión de residuos agrícolas en hidrógeno mediante luz solar, pero se necesita más inversión en investigación para descubrir todo el potencial de los microbios.

Termitas que producen un combustible alternativo

Los microbios que viven en los intestinos de las termitas comunes ayudan a estos insectos a transformar la madera en energía. En el proceso los microbios producen hidrógeno, muchísimo hidrógeno. De hecho, los investigadores dicen que una sola termita puede elaborar hasta dos litros de gas de hidrógeno a partir de una hoja de papel de ocho por once pulgadas. Suena prometedor pero todavía no estamos listos para llenar los depósitos de nuestros coches con termitas.

Enormes poblaciones de microbios productores de hidrógeno viven en los intestinos de esos destructores de casas reconvertidos en héroes energéticos. Diferentes especies de termitas portan diferentes tipos de microbios, pero la mayoría produce hidrógeno como subproducto de la digestión de la celulosa.

Jared Leadbetter (led-better), catedrático del Instituto de Tecnología de California afirma que, en aquellas termitas que han sido mejor estudiadas, lo que mejor se conoce ya es el papel de los microbios protozoos en la producción de hidrógeno.

El hidrógeno es un subproducto intermedio que los microbios usan para generar acetato, un alimento ácido consumido por las termitas.   

Pero ya tenemos vinagre en abundancia. Lo que un mundo famélico de combustible necesita es hidrógeno. Descubrir las herramientas químicas que trabajan dentro de los microbios que viven dentro de las termitas es el próximo gran paso en la cuestión de la energía termítica.

Para finalizar, el bioetanol

Cuando vds. oyen hablar del combustible de etanol probablemente piensan en el maíz. no en balde el maíz es el sustrato más comúnmente utilizado para fabricar etanol en los ee. uu., mientras que la caña de azúcar se usa más en el extranjero. Pero el etanol también puede fabricarse a partir de residuos agrícolas, astillas de madera o hierba, y eso es estupendo, afirma Arnold Demain, un investigador del instituto de investigación para científicos eméritos de la Universidad Drew.

El doctor Demain afirma que a los microorganismos puede resultarle más difícil trabajar con los materiales más abundantes, como las astillas de madera y la hierba, porque están hechos en su mayoría de polímeros duros como la celulosa y la hemicelulosa, productos químicos fatigosos de digerir para los microbios.  

Los científicos están trabajando en métodos para obtener más energía de residuos ricos en polímeros duros de forma que se pueda obtener de ellos más etanol a más bajo coste. pero demain dice que en el futuro usaremos todo tipo de combustibles, incluido el combustible fósil, porque la demanda de combustible en los próximos 50 años va a ser tan grande que tendremos que utilizar todas las fuentes energéticas a nuestro alcance.

Episodio 40

Titulares: diversidad microbiana; avances en la vigilancia de las enfermedades; y suelos antiguos.

Diversidad microbiana

Si viaja a la selva tropical será difícil no quedar maravillado con la inmensa biodiversidad que contiene en su multitud de especies de plantas, insectos, pájaros y mamíferos. Los bosques tropicales son considerados como los semilleros de la biodiversidad del planeta.

Sin embargo Roberto Kolter, catedrático de la Facultad de Medicina en Harvard, opina que la diversidad de las selvas tropicales es maravillosa pero no se puede comparar con la hallada en un solo grano de arena, el cual contiene miles de células microbianas distintas. Un microbio puede ser muy diferente de otro y Kolter hace hincapié en que la escala de diversidad dentro del mundo microbiano todavía no ha sido valorada por completo.

Mientras que todas las especies tienen diferentes estrategias para vivir en las duras condiciones con las que a menudo se encuentran en la tierra y en el mar, la diversidad microbiana en algunos de los lugares más comunes ─ por ejemplo el intestino humano o el suelo ─ todavía no se comprende bien.

Conocer las comunidades microbianas y descubrir los mecanismos por los cuales los microbios se adaptan a las condiciones ambientales proporciona a los científicos una mejor comprensión de la enfermedad, el clima y el medio ambiente.

Avances en la vigilancia de las enfermedades

El brote de SARS (síndrome respiratorio agudo severo) del año dos mil tres fue contenido en dos semanas. Este éxito se debió en parte a un grupo heroico no debidamente reconocido, llamado la Asociación de Laboratorios de Salud Pública o A-P-H-L.

La labor de dicha asociación es coordinar el trabajo de todos los laboratorios, a nivel de los municipios, condado y estado, con los de las agencias federales. A-P-H-L también colabora con grupos internacionales tales como la Organización Mundial de la Salud. En la era del H1N1, la gripe aviar, el SARS y el VIH, el trabajo de esta asociación es crucial.

Ralph Timperi, director de Salud Global de la A-P-H-L, cree que la vigilancia epidemiológica basada en el laboratorio es esencial para comprender que está pasando con una epidemia. ¿Está disminuyendo, está aumentando, quién está siendo infectado? Según Timperi ésta es la única forma en que se puede ganar la batalla contra las epidemias.

Por consiguiente, la detección rápida y certera de las enfermedades debe estar unida con una transferencia de la información aún más rápida si cabe. A-P-H-L logró ayudar a detener la difusión del SARS. También colaboró para contener la extensión del pánico durante la amenaza de ántrax de dos mil uno.

Suelos antiguos

Cuando dos grupos diferentes de arqueología desenterraron ejemplares intactos de cerámica de mil años de antigüedad, la mayoría de la gente estaba entusiasmada por ver las vajillas. Sin embargo a una persona al menos le interesaba mucho más el contenido de las jarras selladas ─ la mugre antiquísima.

Esa persona era Paul Southern, catedrático de patología y enfermedades infecciosas del Centro Médico Southwestern de la Universidad de Tejas. Aunque su especialidad son las enfermedades infecciosas, Southern pensó que podría ser un proyecto colateral fascinante el examinar los suelos del interior de las cerámicas.

Unas circunstancias afortunadas le permitieron ser el primero en tener acceso a los restos encontrados en las dos vajillas, tanto en Italia como en Belice, y como consecuencia pudo comparar y contrastar el contenido microbiano de los dos.

Southern descubrió que la mayor parte de los contenidos eran microbios capaces de producir esporas que pueden persistir en el ambiente durante un tiempo indefinido, algunas de ellas durante cientos de años.

Southern dice que el contenido de la  de Belice posee una mayor diversidad de organismos, posiblemente debido a su localización tropical. Ahora piensa en colaborar con otros científicos para investigar los componentes moleculares de estos antiquísimos microbios.

Episodio 39

Titulares: Leche poderosa; propano y accesorios microbianos; resurrección de microbios; y brote de polio en el Condado de Winnebago.

Leche poderosa

La leche es el primer alimento que la mayoría de nosotros consumimos, y por buenas razones ─ está repleta de nutrientes y estimulantes del sistema inmune que nos ayuda a sobrevivir y a fortalecernos en nuestros primeros meses de vida. Tanto en la leche humana como en la de la vaca existe una proteína llamada lactoferrina que rechaza el ataque de los patógenos. Se ha demostrado que dicha proteína juega un importante papel en nuestro sistema de defensas.

Denis Petitclerc, un investigador del Crea Biopharma en Québec, Cánada, afirma que está  demostrado que la lactoferrina tiene un papel sinérgico con la penicilina, aumentando su efecto.

Petitclerc ha ensayado el efecto de la penicilina con y sin lactoferrina sobre una cepa de Staphylococcus aureus que había dejado de ser sensible a este antibiótico. En ausencia de lactoferrina, la penicilina fue ineficaz pero junto a ella mató a los microbios infecciosos.

Petitclerc dice que la lactoferrina evita que Staph aureus sintetice moléculas defensivas que volverían inactiva la penicilina, deteniendo así el mecanismo defensivo de la bacteria. De esta manera los antibióticos pueden hacer su trabajo más eficazmente. Ha probado su sistema en placas Petri, y ahora quiere comprobar si la lactoferrina realiza el mismo efecto en humanos.

Propano y accesorios microbianos
               
El etano y el propano no son raros en los sedimentos enterrados a gran profundidad por debajo de los suelos oceánicos. Se cree que estos gases, con frecuencia llamados hidrocarburos termogénicos, son producidos por la materia orgánica que se encuentra rodeada de rocas calientes.

Por ello, cuando John Hayes, un responsable de investigación de la Woods Hole Oceanographic Institution en Massachussets, encontró tales gases in rocas sedimentarias frías se llevó una gran sorpresa.

Después de examinar los sedimentos del océano Pacífico central, no halló fuentes potenciales de hidrocarburos termogénicos y dedujo que no eran las rocas sino los microbios los que transformaban la materia orgánica en etano y propano.

De forma normal los microbios de las profundidades marinas descomponen la materia orgánica en ácido acético, hidrógeno y metano, pero Hayes piensa que estas bacterias reutilizan los productos colaterales del metabolismo para producir los gases ricos en energía antes mencionados.

Hayes cree que por supuesto los bichos están haciendo todo lo que pueden para extraer hasta la última pizca de energía.

Si Hayes lleva razón futuros estudios desentrañaran novedosas rutas metabólicas en las bacterias que darán lugar a propano a partir de materia orgánica.

Resurrección de microbios
                   
Un microbio frito por rayos gamma letales o deshidratado en el desierto puede retornar a la vida cuando está a punto de morir. Hace cincuenta años los investigadores descubrieron que Deinococcus radiodurans sobrevivía de alguna manera a la radiación que se utilizaba para esterilizar la carne, a pesar de que los rayos fragmentaran su DNA. Ahora los científicos están desentrañando los secretos de la resurrección del microbio.

Miroslav Radman es un biólogo celular del INSERM, el Instituto Publico para la Investigación Biomédica de Francia.

Radman opina que la singularidad de este organismo es que, a diferencia de otras células, puede reconstituir su genoma a partir de los varios cientos de fragmentos producidos por tal radiación.

El secreto del microbio es que, incluso en los más severos ambientes, siempre tiene al menos dos copias de su genoma a mano. Mientras que las copias no se fragmenten en los mismos lugares, la bacteria puede superponer los segmentos idénticos hasta juntar de nuevo una copia completa de su genoma.

Según Radman, Deinococcus radiodurans hace físicamente igual que los programas de los ordenadores cuando secuencian un genoma.

Una vez que el genoma ha sido restaurado, los enzimas y otros componentes de la célula hacen lo mismo, y de esta manera resucitan al microbio.

En el futuro esta capacidad reconstituyente podría ayudar a los científicos a reparar las células que no se regeneran cuando mueren en los humanos, tales como las neuronas y las del musculo coronario.

Brote de polio en el Condado de Winnebago

En los años cuarenta y cincuenta del siglo pasado, la epidemia de poliomielitis en América hizo pagar un tremendo peaje, física, emocional y económicamente hablando. Recientemente profesores y estudiantes de la Universidad de Wisconsin Oshkosh, en un estudio llamado el Oshkosh Polio Project, han tratado de hacer un recuento de los costes para su comunidad

Estudiantes de cinco disciplinas ─Biología, Psicología, Historia, Enfermería y los Departamentos de TV-Film─ rastrearon los datos de los archivos de la audiencia y de los periódicos.

Para crear una historia oral y hacer un documental, preguntaron a los supervivientes y a sus cuidadores, y a los familiares de la gente que murió. El profesor Teri Shors dice que Wisconsin fue un semillero de Polio en mil novecientos cincuenta y cinco, especialmente en el cercano condado de Outagame, donde hubo más casos por cada 100.000 habitantes que en casi ningún otro lugar de los Estados Unidos.

Shors afirma que era más común que la polio afligiera a la gente de las áreas rurales que a la de las grandes ciudades. Hubo un gran terror a que los niños contrajeran la polio y quedaran inhabilitados y de hecho la polio fue la primera causa de incapacidad en aquella época.

Por fortuna, mil novecientos cincuenta y cinco fue el año en el que la vacuna de Salk vio la luz y pronto la polio fue erradicada en los Estados Unidos. Sin embargo el proyecto de Oshkosh demuestra que sus efectos todavía vibran en la memoria de los que estuvieron allí.

Episodio 38

A continuación: Semillas de uva antibacterianas, Microorganismos buenos y microorganismos malos, Microorganismos con música de rock, y El ABC de lo invisible

Semillas de uva antibacterianas

Recientes hallazgos en la ciencia de los alimentos permiten convertir los desechos de la producción de vino en un producto valioso. Se realizó un experimento con desechos de vino y con la bacteria Escherichia coli, encontrando que estos desechos inhibían el crecimiento bacteriano. Por esto, la harina obtenida a partir de las semillas de las uvas está siendo ensayada como conservante de alimentos. Estos productos de desecho de la producción de vino también podrían tener efectos beneficiosos para la salud, ya que contienen antioxidantes que pueden ayudar a prevenir el cáncer y algunas dolencias cardiacas e incluso inhibir el crecimiento de células tumorales de colon. En el futuro, las semillas de la uva podrían molerse como harina e incluirse como un conservante natural y barato en algunos de nuestros alimentos favoritos.

Microorganismos buenos y microorganismos malos

La cepa de E. coli más temida es la O157:H7, conocida como microorganismo de la hamburguesa. Esta bacteria es responsable de 70.000 casos de diarrea y calambres abdominales en los Estados Unidos. En algunos casos los efectos de la infección pueden persistir hasta veinte años después. Esta cepa es tan virulenta porque libera una toxina llamada shiga que puede causar problemas neurológicos y renales. Un grupo de científicos sugiere que las cepas de E. coli normalmente inofensivas que viven en nuestro intestino pueden ser infectadas por un virus de E. coli que produce la toxina shiga. Una vez infectadas, estas cepas beneficiosas producen y liberan en el cuerpo la toxina. Así, la cepa patogénica de E. coli consigue que la cepa beneficiosa haga el trabajo sucio y produzca su toxina. Por suerte, también se ha demostrado que algunas cepas de la E. coli beneficiosa resisten a la infección por el virus. Se espera descubrir cómo evitan la infección viral, con el fin de desarrollar en el futuro nuevos tratamientos contra las infecciones del microorganismo de la hamburguesa.

Microorganismos con música de rock

Un científico ha encontrado que la música es el medio perfecto para difundir recomendaciones relacionadas con la seguridad de los alimentos. Sus parodias de canciones con tema de seguridad en los alimentos han tenido un gran éxito en diversos tipos de audiencias. Una de sus canciones más populares es una parodia de la canción de los Beatles “I wanna hold your hand” (quiero cogerte de la mano) que él llama “You´d better wash your hands” (deberías lavarte las manos). Es algo que funciona con todos los grupos de edad. El ha actuado para muchas organizaciones científicas y en celebraciones de boda y otros eventos en los que hay muchos alimentos que se comen con las manos.

El ABC de lo invisible

Se trata de un libro que invita a los niños a explorar el fascinante mundo de los microorganismos. En él se habla de microorganismos que se parecen a las letras del alfabeto. Sus brillantes colores y formas se exhiben mediante fotografías microscópicas. El autor decidió dedicar su atención a los microorganismos benéficos, aquellos que producen oxígeno, reciclan los nutrientes del suelo y nos ayudan a permanecer sanos manteniendo alejados de nosotros a los microorganismos patogénicos. El pensó que era importante que los niños comprendieran que el mundo microbiano es algo beneficioso.

Episodio 37

¿Usamos excesivamente los antibióticos?
De modo tradicional se aconseja a los pacientes que continúen sus tratamientos con antibióticos hasta bastante después de que hayan desaparecido los síntomas de la enfermedad. Pero debido a la aparición de muchos microorganismos patogénicos resistentes a los antibióticos, han algunos médicos han empezado a cuestionar esta práctica Actualmente no existen pautas claras sobre cuánto deben durar los tratamientos antibióticos. Se realizó un estudio para determinar la dosis efectiva ideal de antibióticos en el caso de la neumonía comunitaria. Para ello, un grupo de pacientes recibió antibióticos durante menos de siete días y otro durante diez a catorce días. No se encontraron diferencias entre los dos grupos, lo que indica que  la mayoría de los pacientes no parecen necesitar tratamientos prolongados con antibióticos. Es necesario realizar investigaciones con otras enfermedades y con otros antibióticos antes de establecer indicaciones precisas sobre el uso correcto de estos compuestos.  

Gusanos sin intestino
El gusano Olavius algarvensis vive en los sedimentos del mar Mediterráneo y carece de boca, intestino o un sistema para eliminar los desechos líquidos. Pero pueden llevar a cabo sus funciones gracias una relación simbiótica con bacterias que viven en su interior.  A medida que el gusano se desliza por los sedimentos, las bacterias absorben los nutrientes a través de la epidermis de éste. A cambio, le suministran nutrientes, aminoácidos y vitaminas al gusano. Las bacterias, además, también parecen actuar como un diminuto equipo de basureros, pues captan los residuos de amoníaco y urea producidos por el gusano.

Prevención del asma con probióticos
Muchos investigadores están recurriendo a bacterias beneficiosas, consideradas como probióticos,  para combatir las enfermedades. Se han iniciado ensayos clínicos empleando probióticos para determinar si son capaces de proteger del asma cuando se administran a los recién nacidos. Algunos médicos piensan que la exposición del cuerpo del recién nacido a los probióticos puede ayudar a que se estimule el sistema inmune, disminuyendo la posibilidad de que desarrollen los primeros marcadores del asma. En estos estudios las madres suministrarán a los recién nacidos Lactobacillus, la bacteria que interviene en la producción del yogurt. Posteriormente, se hará un seguimiento de los recién nacidos para averiguar si desarrollan o no asma.

Episodio 36

A continuación: Control de infecciones, Chocolate, y Minería con microorganismos.

Control de infecciones

Staphylococcus aureus,  meticilina resistente (conocida como MRSA por sus iniciales en Inglés) es una bacteria que ocasiona lesiones de la piel, que pueden evolucionar en infecciones de la sangre o los huesos.  Debido a que las infecciones por MRSA iban en aumento en los hospitales de Estados Unidos, se intentó controlar la infección utilizando el principio básico del trabajo en equipo entre el doctor y el paciente. Se pidió a los doctores y enfermeras que atendían pacientes positivos para MRSA que utilizaran gorros y guantes al entrar en sus habitaciones, y a los pacientes que preguntaran a sus cuidadores si se habían lavado las manos. En un año las infecciones por MRSA disminuyeron en un 50%. Se afirma que en corto tiempo se puede demostrar que el procedimiento es efectivo, y se propone que todos los hospitales del país sigan este procedimiento.    

Chocolate

El chocolate se obtiene de las semillas del árbol del cacao. Estas semillas, junto con una pulpa que se extrae de las vainas, se dejan fermentar por unos días y en esto reside la clave del sabor del chocolate. Durante la fermentación ocurre una serie de procesos microbiológicos que son los que ayudan a desarrollar el sabor del chocolate. Sin la fermentación, no existiría sabor de chocolate. Este serían amargo y de un sabor bastante desagradable.

Minería con microorganismos

La extracción del cobre de una mina puede ser un proceso costoso y peligroso. Sin embargo, para algunas bacterias es una tarea normal. Aprovechando esta habilidad, en Chile se está desarrollando una tecnología denominada biolixiviacion, que aprovecha los procesos naturales de lixiviación en los que intervienen los microorganismos, los cuales provocan una lenta disolución de los metales en el agua. Algunas bacterias son capaces de romper los enlaces químicos entre el cobre y el sulfuro, aprovechando la energía liberada y produciendo cobre y sulfuro como sustancias de deshecho. Mediante este proceso la recuperación del cobre de las minas podría incrementarse  hasta el noventa por ciento. Lo que antes tardaba años, ahora puede lograrse en sólo unos meses.



Episodio 35

A la búsqueda de los patógenos de los cultivos

Los científicos están desarrollando una nueva tecnología, llamada TIGER, para identificar rápidamente microorganismos patogénicos. Esta tecnología combina dos instrumentos que amplifican el ADN de la muestra, lo analizan y lo comparan con una base de datos de microorganismos patogénicos, identificando con precisión muestras de las que inicialmente no se sabe nada. Se espera que en un futuro, esta herramienta pueda ser transportable para identificar microorganismos perjudiciales in situ.

Los microorganismos de los volcanes pueden ayudar en la lucha contra el cáncer

Se está estudiando un microorganismo volcánico, capaz de sobrevivir en ambientes extremos y que está expuesto a la radiación UV de la luz solar. Este contiene una enzima llamada helicasa, esencial para la reparación del ADN dañado. Se ha descubierto que un complejo de átomos de hierro y azufre es crucial para el funcionamiento de esta enzima; por lo tanto, una mutación que destruye la capacidad de formar este complejo inactiva a la enzima. Debido a que en los seres humanos existen enfermedades producto de mutaciones de este tipo, y a que los rayos ultravioleta dañan el ADN, estas mutaciones aumentan el riesgo de padecer cáncer de piel. Los científicos confían en que futuras investigaciones sobre este microorganismo abran nuevas vías de tratamiento para ciertos tipos de cáncer.

Eliminando la Escherichia coli en las vacas

Con el fin de combatir a la cepa peligrosa de E. coli O157:H7, los científicos están estudiando una serie de fagos, que son virus que infectan sólo a bacterias. El problema con los fagos es que son muy específicos, por lo que si se utiliza un solo fago,  las posibilidades de éxito son muy pequeñas, ya que siempre habrá algunas bacterias que se le resisten. La estrategia entonces, consiste en preparar una mezcla de diferentes fagos. La idea es que una cepa dada de E. coli O157: H7 puede ser resistente a un fago determinado, pero siempre habrá otro que la elimine. Estos fagos atacan únicamente a las cepas peligrosas de E. coli y no causan ningún daño a los animales.

El propano y recursos microbianos

El etano y el propano, hidrocarburos termogénicos, son habituales en los sedimentos profundos de los fondos marinos y se cree que estos gases son producidos a partir de la materia orgánica que se encuentra rodeada por rocas calientes. Sin embargo, se han encontrado estos gases en rocas sedimentarias frías. Los científicos creen que los microorganismos fueron los que convirtieron la materia orgánica en etano y propano. Normalmente, los microorganismos de las profundidades marinas descomponen la materia orgánica en ácido acético, hidrógeno y metano, peor se piensa que también pueden reutilizar los subproductos metabólicos para sintetizar etano y propano, gases muy energéticos Estudios futuros podrán desvelar nuevas vías metabólicas en las bacterias que produzcan propano a partir de la materia orgánica.

Episodio 34

A continuación: Distribución de vacunas, el futuro del biogas, y el retiro de los antibióticos.

Distribución de vacunas

Para muchos de nosotros, el gripe (flu) es una molestia, y las fiebre y los dolores que acompañan el gripe aumentan los días perdidos de escuela y de trabajo. Sin embargo, para aquellos muy jóvenes y muy viejos, la influenza puede ser una infección seria, terminado en la hospitalización o incluso en la muerte.

¿Pero cual es la mejor manera de proteger estas poblaciones vulnerables durante una erupción de influenza? Cuando los suministros de vacunas son bajos, ¿como se puede dar prioridad a cual grupo tratar primero, los viejos, los niños de escuela o los infantes?

Aunque las vacunas ofrecen alguna protección, estas no son perfectas – un porcentaje grande de personas vacunadas pueden de todas maneras contraer el flu. En su lugar, podría ser mejor mantener una comunidad fuera del alcance del flu, vacunando grupos específicos, dependiendo de las propiedades de virulencia de la cepa de flu de ese año.

Schweta (Shway-teh) Bansal, una estudiante de posgrado en la Universidad de Texas, Austin, junto con sus colegas, estudiaron el problema,buscando estrategias para tratamientos más efectivas. Ellos recomendaron que si en un año la cepa del flu no es muy contagiosa, es mejor vacunar a los niños de escuela para contener el esparcimiento del virus

Sin embargo, si la cepa del flu es muy contagiosa, dice Banal, tiene mas sentido vacunar a aquellos grupos de alto riesgo – los infantes y los viejos – directamente

El futuro del biogas

Los microbios transforman los materiales orgánicos en biogas a través de un proceso llamado digestión anaeróbica. Ann Wilkie, profesora asociada de Ciencias del suelo y del agua en la Universidad de Florida, dice que la digestión anaeróbica es muy versátil, los microbios pueden digerir casi cualquier clase de desechos orgánicos, incluyendo desperdicios de alimentos, aguas de alcantarilla e incluso basura de las casas.

Sin embargo las buenas noticias no terminan ahí. El producto de la digestión anaeróbica, llamada biogas, es rica en metano, el cual tiene una composición similar a la del gas natural.

Los humanos podrían aprovechar la digestión anaeróbica para liberarse de muchas clases de desechos y al mismo tiempo obtener una retribución grande en forma del útil biogas. Estos serían no solamente una fuente valiosa de energía, dice Wilkie, sino que también ahorraría los gastos de transporte y eliminación de los materiales de desecho.

La digestión anaeróbica ya se esta utilizando en la producción comercial de biogas a pequeña escala, y países como Suecia y Suiza ya han invertido en trenes y buses de ciudad movidos por biogas. Los productores de carros también están prestando atención al biogas y muy pronto veremos vehículos movidos con bio-combustibles aquí en US.

El retiro de los antibióticos

A los doctores en todo el mundo se les está aconsejando el uso limitado de antibióticos para reducir el incremento de la resistencia a los antibióticos. Sin embargo ¿el retiro de los antibióticos favorecería el crecimiento de patógenos mas susceptibles?

La investigadora Virve Enne de la universidad de Bristol, en el Reino Unido, decidió probar esto utilizando cerdos de las fincas a los cuales se les había suministrado antibióticos desde el nacimiento. Enne llevo los cerdos a el laboratorio, y los confinó en un sitio donde no tuvieran exposición a antibióticos. Ella tomo muestras de microbios intestinales de los cerdos por ocho semanas y analizó si estos eran resistentes a los antibióticos o no.

Enne dice que observó una reducción en los niveles de resistencia a algunos antibióticos pero principalmente a aquellos a los cuales los cerdos no habían sido expuestos.

Enne cree que la bacteria resistente a antibióticos o ha perdido aquellos genes que las hacen resistentes, o estas fueron reemplazadas por bacteria aun sensibles a los antibióticos.

Enne dice que es muy prometedor el hecho de que en un periodo relativamente corto, ellos podrían retirar los antibióticos y razonablemente esperar que los organismos resistentes sean reemplazados por aquellos susceptibles.

Enne dice que lo mismo no necesariamente puede ocurrir en humanos, pero que esta idea podría ayudar a reducir el número de bacterias resistentes en las poblaciones de ganado.

Páginas