
The 5H1a receptor is a seven-membrane spanning 
domain G-protein-coupled receptor that is expressed in 
many cell types [1]. Agonists of this receptor are currently 
in clinical use for treatment of anxiety, and such drugs have 
exhibited neuroprotective properties in spinal cord injury 
[2], Parkinson disease models [3,4], and excitotoxicity [5]. 
In the eye, Collier and colleagues demonstrated that two 
different 5HT1a agonists provided nearly complete protection 
against phototoxic injury in albino rats when given systemi-
cally before and shortly after exposure to bright light [6]. In 
a subsequent paper, the same group demonstrated that one 
of these compounds (AL-8309A) blocked the deposition of 

complement related proteins and the activation of microglial 
following severe photo-oxidative stress [7].

In earlier work, we showed that a prototype 5HT1a 
agonist, 8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT), 
protected ARPE-19 cells from oxidative damage by hydrogen 
peroxide and by paraquat, and that daily administration of 
8-OH-DPAT to mice prevented injury to the RPE and neural 
retina in two mouse models of geographic atrophy caused by 
depletion of manganese superoxide dismutase (MnSOD) in 
the RPE [8,9]. Those experiments required daily injections 
of the compound, which is not approved for human use. 
We wanted to determine whether a similar effect could be 
achieved using a drug that has been tested in patients and is 
available orally.

Xaliproden is a highly selective synthetic 5HT1a receptor 
agonist [10]. It crosses the blood–brain barrier and can be 
taken by mouth. The drug increases the release of dopamine 
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Purpose: Chronic oxidative stress and subacute inflammation have been implicated as causes of age-related macular 
degeneration (AMD). In this study, we tested whether an orally available 5-OH-tryptamine (5HT) 1a receptor agonist, 
xaliproden, could protect against retinal pigment epithelium (RPE) cell damage in culture and in a mouse model of 
geographic atrophy.
Methods: Paraquat was used to create mitochondrial oxidative stress in ARPE-19 cells, and tumor necrosis factor-α 
(TNF-α) was used to stimulate the production of inflammatory cytokines in these cells. The production of antioxidant 
proteins, metallothionein, and inflammatory cytokines was assayed with quantitative real-time PCR. Cell survival was 
analyzed with microscopy and a cell titer assay. Integrity of the RPE monolayer was determined by measuring the tran-
sepithelial electrical resistance (TEER) and with immunocytochemistry with zona occludens protein 1 (ZO-1) antibody. 
RPE atrophy was studied in mice deleted for Sod2 (the gene for mitochondrial superoxide dismutase) specifically in the 
RPE. The mice were treated orally with daily doses of xaliproden at 0.5 and 3 mg/kg for 4 months. The retinal structure 
was analyzed with spectral domain optical coherence tomography (SD-OCT) and with light and electron microscopy. 
Retinal function was assessed with full-field electroretinography (ERG) and with optokinetic measurements.
Results: Xaliproden led to a dose-dependent increase in cell survival following treatment with paraquat. Synthesis of 
the antioxidant response genes NqO1, GSTM1, CAT, HO-1, and Nrf2 was increased in response to the drug, as was the 
zinc chaperone metallothionein. Treatment of cells with TNF-α led to increased production of IL-1β, IL-6, chemokine 
(C-C motif) ligand 20 (CCL20), and vascular endothelial growth factor (VEGF) by ARPE-19 cells, and this response 
was attenuated by treatment with xaliproden. TNF-α also led to a decrease in the TEER that was prevented by treatment 
with the 5HT1a agonist. Daily gavage with xaliproden at either dose induced the production of protective enzymes in 
the mouse retina, and treatment of the Sod2-deleted mice with the drug showed improved thickness of the outer nuclear 
layer and improved visual acuity relative to the control-treated mice. There was no significant difference in full-field 
scotopic ERG among the treatment groups, however. Vacuolization of the RPE and disorganization of the photoreceptor 
outer segments were reduced at both dose levels of xaliproden.
Conclusions: Xaliproden protected RPE cells from oxidative and inflammatory insults and protected the mouse RPE and 
retina from RPE atrophy in the face of excess mitochondrial oxidative stress. These results suggest that this drug, which 
had a reasonable safety profile in clinical trials, may be used to prevent the progression of geographic atrophy in humans.
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in the prefrontal cortex of rats and decreases the level of 
extracellular serotonin in the ventral hippocampus. Both 
effects are attributable to binding of the 5HT1a receptor and 
can be inhibited by pretreatment with a 5HT1a antagonist, 
WAY100635 [11]. The activity of xaliproden appears to be 
mediated by the mitogen-activated kinases Erk1 and Erk2 
[12]. Xaliproden also has neurotrophic properties that are 
dependent on binding to the 5HT1a receptor. This drug has 
been tested in humans as a potential treatment for amyo-
trophic lateral sclerosis (ALS) [13] and Alzheimer disease 
(Clinicaltrials.gov NCT00103649). Although no efficacy was 
demonstrated in these studies, the drug appears to relieve 
allodynia associated with chemotherapeutic agents such as 
paclitaxel [14], and xaliproden has been tested for this indica-
tion in cancer patients (Clinicaltrials.gov NCT00272051).

Because of the protective effect of 8-OH-DPAT in our 
mouse model of retinal degeneration, we wanted to test 
xaliproden in the same model, particularly since the drug’s 
safety profile and side effects have been established in 
several clinical trials. We began by testing the compound 
on an RPE-derived cell line to determine the impact on the 
expression of antioxidant genes and on proinflammatory 
cytokines. We then determined that orally administered 
xaliproden preserved visual function and RPE structure in 
mice subjected to chronic mitochondrial oxidative stress.

METHODS

Cell culture and RNA analysis: We obtained validated 
ARPE-19 cells (CRL-2301, Appendix 1) from the American 
Type Culture Collection (Manassas, VA) and froze cells from 
the first culture immediately. We discarded the ARPE-19 cells 
after three subsequent passages. To extract RNA, cells were 
grown to 90% confluence and then placed in a 1:1 mixture 
of Dulbecco’s Modified Eagle Medium (Sigma-Aldrich, St. 
Louis, MO) and Ham’s F12 nutrient mixture (DMEM/F12) 
plus 1% fetal bovine serum (FBS). We treated the cells with 
20 µM xaliproden (R&D Systems, Minneapolis, MN) plus 
or minus 20 ng/ml TNF-α (PeproTech, Rocky Hill, NJ) or 
300 µM paraquat (Sigma-Aldrich, St. Louis, MO) for 24 h. 
We washed the cells with PBS (120 mM NaCl, 20 mM KCl, 
10 mM NaPO4, 5 mM KPO4, pH 7.4), pH 7.4 and extracted 
RNA using the RNeasy Mini Kit (Qiagen, Valencia, CA). We 
then synthesized cDNA using the iScript cDNA synthesis 
kit (Bio-Rad, Hercules, CA) and amplified PCR products 
(The PCR reaction mixture contained 3 µM gene specific 
primers. After denaturation at 95 °C for 2 min, 40 cycles of 
amplification (94 °C for 15 seconds; 60 °C for 30 seconds).) 
using the gene-specific primers listed in (Appendix 2) and the 
SsoFast EvaGreen Supermix (Bio-Rad). We amplified β-actin 

cDNA from each sample to serve as an internal standard. We 
used the system software from the CFX96 real-time thermal 
cycler (Bio-Rad) to compare transcript levels in the treated 
and untreated samples.

Immunohistochemistry of cultured cells: We grew ARPE-19 
cells in DMEM/F12 plus 1% FBS for 4 weeks in eight-well 
chambered slides. By this time, the cells had assumed a 
cobblestone appearance characteristic of the RPE. We then 
subjected them to treatment with 300 µM paraquat, 20 µM 
xaliproden, or both for 48 h. We fixed the cells using freshly 
prepared 4% paraformaldehyde for 30 min and washed them 
once with PBS. Cells were made permeable by treatment with 
1% Triton X-100 in PBS for 30 min. We exposed the cells to 
10% normal goat serum in PBS plus 0.5% Triton X-100 for 30 
min to reduce background antibody binding. We then washed 
the cells in 0.2% Triton X-100 in PBS and then incubated 
them in the same buffer with a 1:200 dilution of polyclonal 
antibody to ZO-1 (Invitrogen, Grand Island, NY) for 15 h 
at 4 °C. They were washed in PBS + 1% Triton X-100 three 
times and then incubated with secondary antibody (Cy-3 
conjugated goat anti rabbit; Invitrogen) for 30 min at room 
temperature followed by three additional wash steps. After 
they were covered with a coverslip, we imaged the cells in a 
fluorescence microscope.

ELISA: IL-1β secreted from ARPE-19 cells was assayed using 
an enzyme-linked immunosorbent assay (ELISA) kit (BioLe-
gend, San Diego, CA) following the manufacturer’s protocol. 
Briefly, we coated microtiter plates with capture antibody by 
incubation overnight at 4 °C. The wells were washed and then 
incubated with a blocking buffer for 2 h at room temperature, 
followed by three washings. We added different dilutions of 
the supernatants from ARPE-19 cells to the wells in triplicate 
and incubated the cells for 2 h, followed by three washings 
with the wash buffer. We then added detection antibody 
and incubated the cells for 1 h, followed by three washings. 
Avidin-horseradish peroxidase (HRP) was added for 0.5 h, 
followed by three washes. Substrate was added for 0.5 h, and 
the reaction was stopped with the stop buffer. The absorbance 
was measured in a microplate reader at 450 nm.

Measurement of transepithelial electrical resistance: We 
plated the ARPE-19 cells on Transwell inserts (33.6 mm2, 
pore size 0.4 µm; Greiner Bio-One, Monroe, NC) in DMEM/
F12 including 1% FBS and allowed the cells to grow in 
24-well plates for 4 weeks. We added paraquat plus or minus 
xaliproden at the concentrations used above, and the cells 
were incubated for an additional 48 h. We used an EVOM2 
volt/ohm meter (World Precision Instruments, Sarasota, FL) 
to measure the transepithelial electrical resistance (TEER) 
at room temperature as specified by the manufacturer. 
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We calculated the net resistance values by subtracting the 
measurement of a blank well from the measurements of the 
wells that contained cell monolayers.

Drug delivery in a mouse model of geographic atrophy: 
We conducted all animal procedures in accordance with 
the Association for Research in Vision and Ophthalmology 
(ARVO) Statement for the Use of Animals in Ophthalmic 
and Vision Research. The University of Florida Institutional 
Animal Care and Use Committee reviewed and approved all 
animal procedures in advance. Details of the mouse model are 
provided in our earlier publication [15]. Depletion of manga-
nese superoxide dismutase either by ribozyme knockdown or 
by deletion of Sod2 in the RPE (retinal pigment epithelium) 
of mice leads to characteristic features of dry AMD including 
disruption of Bruch's membrane, increased accumulation of 
bisretinoid compounds, increase in RPE lipofuscin and CEP-
modified proteins, localized death of RPE cells and over-
laying photoreceptors [8,15-17]. For the current experiments 
we employed mice with a specific deletion of Sod2 in the 
RPE [9,15]. Briefly, we employed C57Bl/6J mice transgenic 
for PVMD2-rtTA and tetO-PhCMVcre [18] and homozygous for 
a “floxed” (flanked by loxP) of Sod2, the gene for MnSOD 
[19]. We induced the expression of cre recombinase by 
feeding doxycycline containing chow (200 mg/kg in Harlan 
Rodent Diet 7012, Harlan Teklad, Indianapolis, IN) to nursing 
dams for 2 weeks after delivery. We refer to these animals 
as Sod2loxP/loxP RPE-cre mice. Of note, the first time point of 
ERG analysis was 2 weeks after the cessation of doxycycline, 
and by 1 month of age, cre recombinase is not detectable in 
the RPE.

Cohorts of 24 Sod2loxP/loxP RPE-cre mice received a daily 
dose of xaliproden by gavage at 0.5 mg/kg or 3 mg/kg of 
drug dissolved in 0.3% carboxymethylcellulose plus 0.25% 
Tween-20 (vehicle). An additional cohort of mice was treated 
with vehicle only. Sub-groups of 14 mice randomly selected 
were analyzed at monthly intervals with full-field scotopic 
electroretinography (ERG) and spectral domain optical coher-
ence tomography (SD-OCT) with methods described in the 
paper by Mao et al. [15]

Optokinetic measurements: In eight randomly selected mice 
from each treatment group, we measured the visual acuities 
of treated and untreated eyes by observing the optokinetic 
responses of mice to rotating sinusoidal gratings (Opto-
Motry™) [20]. This method measures the acuities of the left 
and right eyes independently based on their sensitivities to 
rotating patterns of bars: Right eyes are more sensitive to 
counterclockwise rotation, and left eyes are more sensitive to 
clockwise rotation. The methods we used to measure acuity 
are described by Pang et al. [21]. Briefly, an unrestrained 

mouse was placed on a pedestal located in the center of four 
LCD computer monitor screens and was observed by an 
overhead video camera. A trial was initiated by presenting 
the mouse with the sinusoidal pattern rotating either clock-
wise or counterclockwise as determined randomly by the 
system software. Initially, the 100% contrast pattern had a 
spatial frequency of 0.200 cycles/degree for both directions 
of rotation. We determined the thresholds for each eye simul-
taneously using incremental functions for correct responses 
in both directions. We defined acuity as the highest spatial 
frequency yielding a threshold response at 100% contrast.

Electroretinography: We performed full-field electroreti-
nography as described in our earlier study on 8-OH-DPAT 
[9]. After overnight dark adaptation and ketamine/xylazine 
anesthesia (95 mg/kg ketamine and 5 mg/kg xylazine in 
100 µl given i.p.), we recorded responses from both eyes 
using an LKC UTAS Visual Electrodiagnostic System with 
a BigShot™ full-field dome (LKC, Gaithersburg, MD). 
Scotopic ERGs were elicited with 1 msec flashes of white 
light at 0 dB (2.68 cds/m2), −10 dB (0.18 cds/m2), and −20 dB 
(0.02 cds/m2). Ten scans were averaged at each light intensity. 
We then exposed mice to a 2 min white light bleach in the 
Ganzfeld dome and then to a white flash at 1.0 cd sec/m2 
intensity to elicit a cone response. The a-wave amplitudes 
were measured from the baseline to the peak in the cornea-
negative direction, and the b-wave amplitudes were measured 
from the cornea-negative peak to the major cornea-positive 
peak.

Histology and immunohistochemistry of mouse tissue: 
Mice were injected with 150 mg/kg of sodium pentobar-
bital (Euthasol) and then perfused with PBS containing 
2% paraformaldehyde and 2.5% glutaraldehyde. Mice were 
enucleated, and the eyes were soaked overnight in 4% para-
formaldehyde and 2% glutaraldehyde. We soaked the tissue 
in 0.1 M cacodylate buffer (pH7.4) for 10 min and incubated 
it in 1% osmium tetroxide for 4 h at 4 °C in the same buffer. 
We then soaked the tissue overnight in cacodylate buffer at 
4 °C. Subsequently, we dehydrated the tissue in a series of 
ethanol baths and steeped the tissue in epoxy/propylene on 
a rotator for embedding. For light microscopy, we prepared 
1 µm sections, while for electron microscopy, we prepared 
sections of 80–100 nm.

For immunohistochemistry, we euthanized mice with 
inhalation of carbon dioxide. For analysis of retinal sections, 
eyes were fixed in melting isopentane as described by 
Wolfrum [22]. We placed cryosections on polylysine-coated 
slides and soaked them in PBS containing 0.01% Tween-20 
for 30 min. We then soaked them in a blocking solution 
containing mouse immunoglobulin (IgG; Vector® M.O.M.™ 
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Immuno detection kit, cat no. BMK-2202, Burlingame, CA) 
for 1 h followed by an overnight incubation at 4 °C with 
primary antibody against carboxyethylpyrrole (CEP) [23] at 
a dilution of 1:400 in PBS/Tween-20. We washed the sections 
in the same buffer three times and incubated them for 1 h 
at room temperature with fluorescently tagged secondary 
antibody (Alexa Fluor® 594 goat anti-mouse IgG from Life 
Technologies, Cat No: A11005) plus 4’,6-diamidino-2-phenyl-
indole (DAPI) to stain the nuclei. We prepared digital micro-
graphs using a Keyence (Itsaca, IL) fluorescence microscope.

Analysis of RNA from tissue: We treated 2-month-old mice 
with 3 mg/kg of xaliproden by mouth for 4 days. The mice 
were euthanized with CO2 inhalation, and RNA was extracted 
from the dissected retinas using the RNeasy Mini Kit from 
Qiagen. We performed the cDNA synthesis and qPCR as 
described for cultured ARPE-19 cells.

Statistical methods: To compare the mean values of several 
groups (e.g., ERG amplitudes over time), we employed 
ANOVA with the Newman-Keuls test for multiple compari-
sons. Except for ERG results, error bars represent the standard 
deviation. For ERG results, error bars indicate standard error 
of the mean. We took a significance level p<0.05 as signifi-
cant. For comparison of RNA levels in treated and untreated 
cells or mice, we used the Student t test for unpaired samples.

RESULTS

Xaliproden protects RPE-derived cells from oxidative injury: 
Paraquat is an herbicide structurally similar to MPP+, which 
is known to induce Parkinsonism in animals and humans. 
Complex III of the mitochondrial electron transport chain 
(coenzyme Q-cytochrome c oxidoreductase) converts para-
quat into a free radical that interacts with molecular oxygen 
to form superoxide [24]. To model mitochondrial oxidative 
stress in the RPE, we exposed ARPE-19 cells, which are 
derived from human RPE cells, to paraquat in the presence 
or absence of 20 µM xaliproden. There is strong pharma-
cological evidence of 5HT1a receptors on human RPE cells 
[25]. To determine whether the drug induced the expression 
of antioxidant genes, we extracted RNA after 15 h, and 
measured gene expression with quantitative RT–PCR (Table 
1).The values in this table represent the RNA levels compared 
to untreated cells; a value of 1 indicates no change compared 
to the control. As previously observed using 8-OH-DPAT, 
we detected a significant induction of genes regulated by 
the antioxidant response element (NqO-1, GSTM1, HO-1) 
in response to paraquat or to paraquat plus xaliproden. The 
induction of NqO-1 and GSTM1 was much greater when cells 
were treated with both compounds, but xaliproden alone did 
not lead to increased expression of HO-1 and catalase (CAT). 

Interestingly, expression of the transcription factor Nrf2, 
which regulates these genes, was suppressed by either para-
quat or xaliproden but was induced by the combination treat-
ment relative to treatment with paraquat alone. Others have 
reported that paraquat treatment reduces the levels of Nrf2 in 
kidney and neuroblastoma cell lines [26,27]; nevertheless, we 
do not know the cause of the decreased expression of Nrf2 in 
ARPE-19 cells after paraquat or xaliproden treatment alone. 
The level of Nrf2 protein is regulated post-transcriptionally, 
but the promoter of the Nrf2 gene contains active antioxidant 
response elements (ARE) suggesting autoregulation of this 
gene [28]. We also observed a substantial induction in the 
transcription of metallothionein 1 (a zinc chaperone protein) 
in the presence of paraquat (5.5-fold) or xaliproden (3.3-fold) 
and a 10-fold increase in expression by the combination 
treatment.

To determine whether upregulation of these protective 
genes correlated with increased cell survival, we measured 
cell viability in response to paraquat at different concentra-
tions of xaliproden added simultaneously. At 300 µM, para-
quat killed more than 80% of the cells after a 24 h incubation, 
but addition of xaliproden led to an increase in cell viability 
at all levels tested (Figure 1 and Appendix 3). In our earlier 
work, we observed a maximum of 60% protection from 
paraquat-induced oxidative stress with 8-OH-DPAT [9], while 
up to 80% protection was observed with xaliproden under the 
same conditions.

ARPE-19 cells form tight junctions similar to RPE mono-
layers when grown in culture for several weeks in low serum 
medium. We grew such cells on permeable Transwells and 
measured the cells’ TEER after treatment with paraquat in the 
presence or absence of xaliproden. Treatment with paraquat 
caused a greater than 50% drop in the resistance of confluent 
ARPE-19 cells that had been maintained 4 weeks in 1% FBS 
medium (Figure 2). Simultaneous treatment with paraquat 
and xaliproden resulted in no decrease in transepithelial resis-
tance, indicating that the integrity of the monolayer had been 
maintained. Light micrographs of the ARPE-19 monolayers 
decorated with primary antibodies to ZO-1 confirmed that 
elevation of oxidative stress by paraquat disturbed the tight 
junctions, but they were preserved by simultaneous treatment 
with xaliproden (Figure 3).

Xaliproden reduces the release of proinflammatory cytokines 
and the disruption of barrier properties: TNF-α is increased 
in several retinal diseases involving chronic inflamma-
tion, including age-related macular degeneration (AMD) 
[29]. This cytokine promotes migration and adhesion of 
RPE cells grown in culture [30], and TNF-α induces the 
expression of IL-1β, IL-6, and vascular endothelial growth 
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factor (VEGF)-A by RPE cells [31]. To determine whether 
xaliproden could modulate the expression of cytokines or 
chemokines induced by TNF-α, we treated ARPE-19 cells 
with TNF-α in the presence and absence of xaliproden. 
As expected, treatment of cells with TNF-α alone caused 
a massive increase in the production of mRNA for IL-1β 
(171-fold), IL-6 (10.3-fold), and the chemokine CCL-20 (119-
fold) relative to untreated cells (Table 2). Treatment of the 

ARPE-19 cells with xaliproden reduced the impact of TNF-α 
on the production of inflammatory cytokines. In addition, 
TNF-α led to a 2.5-fold increase in the synthesis of VEGF-A 
mRNA, and this effect was abrogated by cotreatment with 
xaliproden. Members of the IL-6 family protect photorecep-
tors from light injury and retinal ganglion cells following 
injury to the optic nerve [32,33], but IL-6 is a proinflamma-
tory cytokine that abrogates immune privilege of the eye [34]. 

Table 1. Enhancement of antioxidant response by Xaliproden.

Target gene
Relative expression ± SD.

P value
PQ Xaliproden PQ +Xaliproden

NqO-1 2.88±0.35 1.63±0.20 5.76±1.24 0.0014
GSTM-1 1.47±0.02 1.28±0.18 3.24±0.41 0.0002
Nrf 2 0.39±0.01 0.42±0.04 1.94±0.16 <0.0001
Met-1 5.57±0.85 3.34±0.67 9.98±0.75 0.0001
HO-1 2.55±0.25 1.07±0.07 2.48±0.45 0.0016
CAT 1.22±0.07 0.95±0.36 1.82±0.16 0.0095

ARPE-19 cells were seeded at 90% confluency and grown overnight. They were changed into serum free 
media and treated with 20 μM xaliproden, 300 μM paraquat (PQ), or a combination of two and grown for 
24 h. RNA was extracted from these cells and used for cDNA synthesis followed by qPCR with primers for 
target genes indicated. Assays were performed in three biologic replicates. Values represent average fold 
change compared to the untreated samples ± s.d. Abbrev: NqO-1, NAD(P)H dehydrogenase quinone 1; 
GSTM-1, Glutathione ;Met-1, metallothionein-1, HO-1, heme oxygenase 1; CAT, catalase. P values were 
determined by one-way ANOVA comparing untreated cells and the three treatment groups. To determine 
the significance, mean values of these groups were compared by ANOVA with the Newman-Keuls post hoc 
test. This analysis is included as Appendix 6.

Figure 1. Xaliproden protects 
ARPE-19 cells against mitochon-
drial oxidative stress. ARPE-19 
cells were seeded in a microtiter 
plate at 70% conf luency and 
allowed to grow overnight. They 
were then placed in a serum-free 
medium and treated with 300 μM 
paraquat. Increasing amounts of 
xaliproden were added as indicated, 
and the cells were incubated for 
24 h. Cells were stained with Cell 
Titer Aqueous (Promega), and the 
absorbance read in a plate reader. 
Cell survival was calculated using 
the absorbance of cells with serum-
free media as 100%.
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Therefore, reduction of IL-6 may diminish neuroprotection 
while also reducing inflammation.

To confirm that the increase in synthesis of IL-1β RNA 
corresponded to an increase in the production and release of 
IL-1β, we measured the levels of the cytokine in the culture 
medium using ELISA. TNF-α led to an 80-fold increase in 
IL-1β released into the medium, and this increase was reduced 
58% by cotreatment with xaliproden (Figure 4). Treatment of 
confluent ARPE-19 cells with TNF-α led to a loss in cell 
count, and this loss was prevented by simultaneous treatment 
with xaliproden (Appendix 3).

Treatment of ARPE-19 cells that had been allowed to 
form tight junctions with TNF-α led to a 55% reduction in 
transepithelial resistance suggesting a disruption of tight junc-
tions. Cotreatment with xaliproden mitigated this damage, 
and the TEER was preserved (Figure 5), corresponding to 
an increase in tight junctions revealed with ZO-1 immuno-
histochemistry (Figure 3). This result is consistent with an 
increase in the synthesis of the tight junction protein occludin 
in the presence of TNF-α and xaliproden (Table 2).

Elevation of protective proteins in the retina: To determine 
whether xaliproden would lead to an elevation of protective 
enzymes in the retina, we fed C57Bl/6J mice xaliproden 

(3 mg/kg) for 4 days. Two hours after the final dose the 
mice were humanely sacrificed, and their retinas dissected 
for analysis of RNA levels with quantitative real-time PCR 
(Table 3). Relative to the levels of mRNA measured in the 
mice treated with vehicle alone, we detected a 3.9-fold 
increase in the level of HO-1 and Met-1 mRNA, a 3.5-fold 
increase in GSTM1 expression, and a 3.8-fold increase in 
NqO1. The extent of the increase in the expression of these 
genes was greater than we had observed earlier using 8-OH-
DPAT [9]. The level of catalase mRNA was elevated by 50% 
in the drug-treated mice, similar to the level of increase seen 
using 8-OH-DPAT.

Xaliproden reduces the level of CEP-modified proteins in 
the RPE: CEP is an oxidation product of docosahexaenoic 
acid-containing lipids that covalently modifies proteins in 
Bruch’s membrane and drusen in AMD eyes [35,36]. We 
previously showed that CEP-adducted proteins are increased 
in the RPE of mice depleted for MnSOD in that cell layer 
[16]. To determine whether the protection of RPE-like cells 
in culture would translate to reduced oxidative stress RPE 
cells in mice, we turned to our model of retinal degeneration 
caused by the RPE-specific deletion of the gene for MnSOD 
[15]. These mice exhibit a gradual decline in ERG amplitudes 

Figure 2. Xaliproden protects 
against the loss of tight junctions in 
the presence of paraquat. ARPE-19 
cells were seeded in 24 Transwell 
plates and grown in low serum 
medium for 2 weeks. The cells 
were then treated with paraquat 
(300 µM), xaliproden (20 µM), or 
a combination of the two for 24 h 
before the transepithelial resis-
tance (TEER) was measured in a 
volt/ohm meter. Bars represent the 
average electrical resistance from 
triplicates ± standard deviation 
(SD). *, p = 0.006 between para-
quat, and paraquat + xaliproden, as 
determined with one-way ANOVA. 
Par = paraquat; Xali = xaliproden.
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Figure 3. Xaliproden protects against the loss of tight junctions caused by oxidative stress and inflammation. ARPE-19 cells were grown for 
4 weeks in low serum media until a change in the cuboidal shape was noticeable. They were then treated with 300 μM paraquat alone or in 
combination with xaliproden (20 μM) or left untreated for 48 h. Alternatively, the cells were treated with tumor necrosis factor-α (TNF-α; 
10 ng/ml) or a combination of TNF-α and xaliproden for 48 h. Cultures were then permeabilized with 1% Triton X-100 and incubated with 
an antibody to zona occludens-1 (ZO-1), followed by a Cy-3 conjugated secondary antibody and viewed in a fluorescence microscope. A: 
Paraquat alone. B: Paraquat plus xaliproden. C: TNF-α alone. D: TNF-α plus xaliproden.

Table 2. Xaliproden exhibits anti-inflammatory properties.

Target gene
Relative expression ± SD.

P value
TNFα TNFα +Xaliproden

IL-1β 171.3±13.8 95.2±19 0.018
IL-6 10.3±1.4 5.7±1.8 0.04
CCL-20 119.4±5.6 76.6±16 0.03
VEGFA 2.5±0.4 0.84±0.1 0.005
Occludin 1.7±0.2 2.8±1.3 0.1

ARPE-19 cells were treated with 20 μM xaliproden for 3 h, followed by treatment with TNFα (10 ng/ml) 
for 4 h. RNA was extracted from these cells and was used for cDNA synthesis followed by qPCR with 
primers for target genes indicated. Three biologic replicates were performed and expression relative to 
β-actin was determined. Values represent average fold change over the untreated samples ± standard devia-
tion. P values were determined by Student t test for unpaired samples.
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that is statistically significant only after 6 months, but they 
show signs of RPE and photoreceptor atrophy by 4 months. 
We treated the mice at two dose levels (0.5 mg/kg and 3 mg/
kg) by daily gavage for 4 months starting at 1 month of age 
(approximately 1 week post-weaning). These levels corre-
sponds to doses 0.04 mg/kg and 0.24 mg/kg for a 60 kg human 
based on body surface area [37]. The dose given in the ALS 

clinical trial of xaliproden was 2 mg per day, meaning that our 
low dose was in that range. We employed an antibody gener-
ated against CEP-conjugated human serum albumin [38] to 
visualize CEP-modified proteins by immunohistochemistry 
(Figure 6). We noted reduced staining for CEP in Sod2loxP/

loxP RPE-cre mice treated at either level of xaliproden (0.5 
or 3 mg/kg) relative to mice treated with the vehicle alone. 

Figure 4. Xaliproden suppresses 
the secretion of IL-1β from cells 
induced with TNF-α. ARPE-19 
cells were seeded at 70% conflu-
ency and grown overnight. They 
were incubated in serum-free 
media for 3 h followed by the addi-
tion of 10 ng/ml of tumor necrosis 
factor-α (TNF-α) or TNF-α plus 20 
µM xaliproden, and the cells were 
grown for 15 h. Supernatants were 
harvested and used for quantita-
tion of interleukin (IL)-1β in with 
enzyme-linked immunosorbent 
assay (ELISA). Bars represent the 
average of triplicates ± standard 
deviation (SD). *, p = 0.008. xal = 
xaliproden.

Figure 5. Xaliproden protects 
against the loss of tight junctions in 
the presence of TNF-α. ARPE-19 
cells were seeded in 24 Transwell 
plates and grown in low serum 
medium for 4 weeks. The cells were 
then treated with tumor necrosis 
factor-α (TNF-α; 10 ng/ml), xalip-
roden (20 M), or a combination of 
the two or left untreated for 48 h 
before the transepithelial electrical 
resistance (TEER) was measured 
using a volt/ohm meter. Bars 
represent the average electrical 
resistance from triplicates ± stan-
dard deviation (SD). *, p = 0.005, as 
determined with one-way ANOVA. 
xal = xaliproden.
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This result suggests that the elevation of protective proteins 
in response to xaliproden treatment reduces the burden of 
oxidized lipids in the RPE. Renganathan and colleagues had 
previously reported that another 5HT1a agonist, AL-8309A, 
reduced the level of CEP adducts in albino rats subjected to 
injury by blue light exposure [23].

Xaliproden improves visual function and retinal structure: 
We analyzed retinal function in these mice using the optoki-
netic response by OptoMotry™. Measuring acuity with this 
approach does not average the response of the full retina, as 
does full-field ERG, so that acuity measurements appear to 
be more sensitive to the impact of injury [39] or, conversely, 
to rescue [40] in some cases. Treatment with 0.5 mg/kg 
xaliproden led to a 28% improvement in visual acuity and 
treatment with 3 mg/kg to a 31% improvement relative to 
mice treated with vehicle alone (Figure 7A). This improve-
ment in behavior performance was paralleled by a slight, but 
statistically significant, increase in the thickness of the outer 
nuclear layer in mice treated with either dose level of xali-
proden, suggesting improved survival of the photoreceptor 
cells (Figure 7B).

Despite the relative protection of the outer nuclear layer 
(ONL) thickness and visual acuity afforded by xaliproden, we 
observed no comparable impact of the drug on ERG ampli-
tudes. After 4 months of treatment, we observed no signifi-
cant difference in a-wave and b-wave amplitudes between 
Sod2loxP/loxP RPE-cre mice treated with vehicle or either dose 
of xaliproden (Figure 8). However, as expected from our 
earlier characterization of this model, the ERG amplitudes 
were not significantly changed at this time point. There was 
no significant difference between the amplitudes measured 
at 2 months and those measured at 4 months (Figure 8 and 
Appendix 4). Similarly, we observed no significant differ-
ence in photopic ERG b-wave amplitudes between mice 

treated with vehicle alone or with the low dose of xaliproden 
(0.5 mg/kg), but we noticed a depression of the photopic ERG 
response at 4 months in mice treated at the higher dose (3 mg/
kg). This reduction was statistically significant relative to the 
low-dose-treated mice and may reflect a harmful effect of 
prolonged high-dose treatment that was not apparent with 
SD-OCT or optokinetic measurements (Figure 7).

Xaliproden treatment preserved the structure of the RPE and 
photoreceptors: At the conclusion of 4 months of treatment, 
the eyes of mice from each treatment group were prepared 
for electron microscopy. Even at low magnification (Figure 
9), the difference between the control-treated Sod2loxP/

loxP RPE-cre mice and those treated at either dose level of 
xaliproden was apparent. The RPE of vehicle-treated mice 
was thinner and exhibited abundant vacuoles that contained 
membrane fragments. The increase in RPE vacuolization 
extended along the entire periphery of the retina as revealed 
with light microscopy (Appendix 5). Nuclei of the RPE cells 
were irregular and condensed, typical of dying cells, and the 
in-foldings at the basal surface of the RPE were distended. 
Photoreceptor outer segments were broken and contained 
cystic spaces. The stacking of disc membranes in the rod 
outer segments appeared disrupted. In contrast, the RPE of 
xaliproden-treated mice did not contain massive vacuoles, 
and the basal in-foldings appeared condensed. Photoreceptor 
outer segments were continuous, and disc membranes were 
compact and regularly stacked. At higher magnification 
(Figure 10), the RPE of xaliproden-treated mice exhibited 
more mitochondria along the basal surface and vertically 
displaced melanosomes typical of normal RPE, features 
lacking in the control mice. Treatment with the drug also 
reduced the accumulation of lipofuscin-containing vesicles 
seen in the vehicle-treated mice.

Table 3. Xaliproden administration by oral gavage induces antioxidant response in mouse retina.

Target gene
Relative expression (versus β-actin) ± SD.

Fold induction P value
Saline Xaliproden

HO-1 2.91±0.68 11.4±3.6 3.9 0.01
GSTM-1 46.64±16 163.7±30.3 3.5 0.002
NqO-1 0.66±0.23 2.5±0.67 3.8 0.007
CAT 39.88±11.5 63.0±14 1.58 0.03
Met-1 77.45±12.3 301±34 3.88 0.007

Mice (C57BL/6, 4 −6 weeks old, n=5) were given xaliproden (3 mg/kg), or saline as control by oral gavage once daily for four days. On 
fourth day, eyes were enucleated, dissected obtain the retina. RNA was extracted and used to carry out qPCR for the antioxidant genes 
expression relative to β-actin. Values represent average fold change over the saline treated mice (both relative to β-actin) ± SD. Ab-
brev: HO-1, heme oxygenase; GSTM1, glutathione S-transferase Mu-1; NqO-1, NAD(P)H dehydrogenase Mu-1; CAT, catalase, Met-1, 
metallothionein-1. P values were determined using Student t test for unpaired samples.
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Figure 6. Decrease in CEP-modified proteins in retinal pigment epithelium (RPE) of xaliproden-treated mice. Frozen sections of eyes from 
Sod2 knockout mice prepared following 4 months of oral dosing with xaliproden at (A) 0 mg/kg (vehicle), (B) 0.5 mg/kg, or (C) 3 mg/
kg. Primary antibody was a gift of John Crabb of the Cleveland Clinic Research Foundation and was raised against carboxyethylpyrrole 
(CEP)-modified serum albumin outer nuclear layer (ONL); sclera (SCL). Secondary antibody was Alexa Fluor® 594 goat anti-mouse 
immunoglobulin G (IgG; Life Technologies, Cat No: A11005).
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DISCUSSION

The induction of antioxidant (Table 1) and anti-inflammatory 
(Table 2) genes by xaliproden may explain the protective prop-
erties of this drug in models of peripheral neuropathy [41] and 
the anti-inflammatory effects of the drug in the EAE model 
[42]. These properties provided hope that xaliproden would 
be a useful therapeutic for ALS, a hope that was unfulfilled 
in clinical trials. Nevertheless, safe and tolerable doses of this 
drug were identified, and in phase III trials, the drug had a 
small positive effect on clinical outcome. In a clinical trial 
of xaliproden for peripheral neuropathy caused by chemo-
therapy for colon cancer, xaliproden decreased neurotoxicity 
by 39%. Side effects of the drug included diarrhea, dizziness, 
anxiety, tinnitus, and vertigo and are serotonin-related [43]. 
These side effects are similar to the side effects of the 5HT1a 

agonists currently on the market. The fact that the compound 
can be taken by mouth and has an established clinical profile 
encouraged us to consider xaliproden for treatment of age-
related macular degeneration.

We tested this compound on RPE-derived cells in culture 
subjected to oxidative and proinflammatory stimuli and in a 
mouse model of RPE and retinal atrophy based on mitochon-
drial oxidative stress in the RPE. RPE oxidative stress that 
increases with age and the resultant chronic subacute inflam-
mation are considered important contributory factors for 
AMD. At 0.25 mM, paraquat actually extends the longevity 
of C. elegans grown in culture possibly with induction of 
Hif-1 and AMPK [44]. In ARPE-19 cells, paraquat alone 
induced the production of metallothionein and the Nrf2-
regulated genes NqO1 and GSTM1. Others have noted that 

Figure 7. Xaliproden treatment 
leads to improved visual acuity 
and thicker outer nuclear layer 
(ONL) in Sod2-deleted mice. A: 
After 4 months of treatment with 
xaliproden at the indicated doses, 
the mice were assessed for visual 
acuity with OptoMotry™ (n = 8). 
B: After 4 months of treatment, the 
mice were analyzed with spectral 
domain optical coherence tomog-
raphy (SD-OCT) for thickness of 
the outer nuclear layer (ONL; n = 
12). **p<0.01;***p<0.001.
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Figure 8. No difference in scotopic ERG response with drug treatment. Dark-adapted electroretinogram (ERG) amplitudes measured at three 
flash intensities for mice treated with 0 mg/kg (control, n = 12), 0.5 mg/kg (low dose, n = 15), or 3.0 mg/kg (high dose, n = 12) of xaliproden 
for 4 months. A: a-wave amplitudes at 2 months of treatment. B: a-wave amplitudes at 4 months of treatment. C: b-wave amplitudes at 2 
months of treatment. D: b-wave amplitudes at 4 months of treatment. Scotopic ERGs were elicited with 1 msec flashes of white light at 0 dB 
(2.68 cds/m2), −10 dB (0.18 cds/m2), and −20 dB (0.02 cds/m2). (n = 12). With the exception of the b-wave response at 2 weeks at the −10 dB 
flash intensity (p<0.05), we observed no statistically significant difference among the three treatment groups. E: Following 2 min of white 
light exposure, the photopic b-wave ERG amplitudes at −10 dB (0.18 cds/m2) were measured following 2 months and 4 months of treatment 
with xaliproden. Control = Vehicle, low dose = 0.5 mg/kg, high dose = 3.0 mg/kg. n = 12; (*p<0.05, high dose versus low dose; high dose 
versus control not significant.) Error bars are standard error of the mean.
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AMPK activation stimulates Nrf2 signaling in mammalian 
cells [45,46]. Nevertheless, elevation of antioxidant pathways 
was not sufficient to prevent the toxic effects of paraquat 
on ARPE-19 cells, but increased stimulation of antioxidant 
genes and metallothionein by the combination of paraquat 
and xaliproden resulted in increased survival of the same 
cells (Figure 1).

We have reported similar results for another 5HT1a 
agonist, 8-OH-DPAT [9], but in that study we did not examine 

the response of cultured RPE cells to proinflammatory stress. 
Here we report treatment of ARPE-19 cells with TNF-α 
led to the increased synthesis of IL-1β, IL-6, CCL20, and 
VEGF-A. This impact was mitigated by xaliproden (Table 2). 
Furthermore, TNF-α led to a breakdown of the tight junctions 
between RPE cells, and the integrity of the monolayer was 
preserved by xaliproden (Figure 5). Terasaki et al. studied the 
impact of TNF-α in primary porcine RPE cells and reported 
a difference in outcome depending on whether the cells were 
allowed to become polarized or not [47]. They reported that in 

Figure 9. Damage from RPE oxidative stress is reduced by treatment with xaliproden. Electron micrographs of eyes of Sod2loxP/loxP RPE-cre 
mice treated for 4 months with (A) vehicle, with (B) 0.5 mg/kg xaliproden, or with (C) 3.0 mg/kg xaliproden. Vacuoles apparent in the RPE 
and photoreceptor outer segments of control mice (A) are largely absent in the xaliproden-treated mice (B and C). Original magnification 
2,000X; scale bar = 10 μm.

Figure 10. RPE vacuolization is mitigated by xaliproden. Electron micrographs of eyes from mice treated for of Sod2loxP/loxP RPE-cre mice 
treated for 4 months with (A) vehicle, with (B) 0.5 mg/kg xaliproden, or with (C) 3.0 mg/kg xaliproden. The unfolding of the basal structure 
of the RPE and the large vacuoles in the RPE present in vehicle-treated eyes (A) is reduced in the eyes of animals fed with xaliproden. 
Original images 5,000X, scale bar = 2 μm.
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both conditions, TNF-α stimulated the production of NF-κB 
p65 and that nuclear accumulation was enhanced in polarized 
cells. Chronic sub-acute inflammation in the RPE and retina 
is considered a contributory factor to the development of 
AMD [48], and our cell culture data suggest that xaliproden 
may be an effective treatment to curtail inflammatory and 
angiogenic signaling.

In our original description of the Sod2loxP/loxP RPE-cre 
mice as a model for geographic atrophy [15], we detected 
significant thinning of the ONL only at the 6-month time 
point, but we did not assess mice at 5 months, the age 
reported here (Figure 7B). At this age, treatment of mice with 
either dose level of xaliproden led to an increased thickness 
of the ONL relative to the control-treated mice, which we 
attribute to increased survival of photoreceptors. Increased 
thickness at this age correlated with improved visual acuity 
(Figure 7A) but not with improved scotopic ERG response 
(Figure 8). As noted above, optokinetic analysis appears to 
be more sensitive to small improvements in retinal function 
than does full-field ERG. We observed a depression in the 
photopic b-wave amplitude after 4 months of treatment at 
the high dose of xaliproden. This treatment did not correlate 
with damage evident by electron microscopy. Alterations in 
central serotonin neurotransmission can alter the implicit 
time of the photopic b-wave [49], and it is possible that the 
chronic exposure to high levels of xaliproden elicited an adap-
tive physiologic response that was not evident by changes in 
microscopic anatomy. Serotonin agonists change circadian 
responses to light, and chronic administration of the 5HT1a 
agonist buspirone caused significant changes in circadian 
patterns of locomotion [50]. Since photoreceptor disc shed-
ding is governed by circadian rhythm, it is conceivable that 
this process was also impacted by chronic administration of 
a 5HT1a agonist.

Histology and electron microscopy revealed a major 
impact of xaliproden on the Sod2-deleted mice (Figure 9). 
A masked observer correctly differentiated treated from 
untreated animals based on inspection of light micrographs 
(Appendix 5). What distinguished eyes from untreated mice 
from either treatment group was the presence of numerous 
vacuoles in the RPE layer. Some vacuoles or separations 
between RPE cells were present in all of the mice, but the 
extent of vacuolization was far greater in the mice treated 
with vehicle alone. We present these results qualitatively, 
because accurate measurement of vacuole numbers would 
require serial sectioning of eyes from several mice per 
group, and the workforce for this effort was not available. 
Study of higher magnification images of the RPE revealed 
the normal appearance of the basal surface of the RPE in 

xaliproden-treated mice, relative to the disorganized and 
osmophilic basal in-foldings of the vehicle-treated eyes. 
Similar damage to this structure has been reported in other 
mouse models of AMD based on inflammatory stimulation 
or oxidative stress [38,51-54].

Although we did not detect significant shortening of 
photoreceptor outer segments in the control mice (data 
not shown), the rod outer segments appeared broken and 
sometimes contained large vacuoles. Treating the mice with 
xaliproden prevented this photoreceptor damage. Accumula-
tion of broken tips of photoreceptors may reflect a defect in 
the phagocytic function of RPE cells or in the function of 
RPE lysosomes in mice with unrelieved mitochondrial oxida-
tive stress. We hope to test this hypothesis in primary RPE 
cultures derived from Sod2loxP/loxP RPE-cre and control mice, 
and to study the effects of 5HT1a agonists in this experi-
mental system.

These data suggest that xaliproden may be an effective 
treatment for preventing RPE loss leading to geographic 
atrophy. Remaining questions concerning the use of this drug 
for this indication include (1) whom to treat and (2) whether 
the serotonergic side effects of the drug will be tolerable. We 
suggest that patients with mid-stage disease presenting with 
large irregular drusen would be candidates for treatment. 
Whether the side effects are acceptable depends on the dose 
and on the patient. One approach to avoiding side effects 
would be to deliver xaliproden locally instead of systemically. 
Recent advances in drug delivery to the back of the eye may 
make that route feasible [55-57].

APPENDIX 1. STR ANALYSIS.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. PRIMERS FOR QPCR

To access the data, click or select the words “Appendix 2.”

APPENDIX 3.

Xaliproden protects against the oxidative stress by paraquat 
and inflammation by TNFα. ARPE-19 cells were seeded in 
8 well plates at 70% confluency and grown overnight. They 
were changed into serum free media and treated with para-
quat (300 µM), or TNFα (10 ng/ml) alone, or in combination 
with xaliproden (20 µM) for 24 h, or left untreated. They were 
then fixed, permeabilized and stained with hematoxylin and 
eosin Y. Images were prepared at original magnification of 
40X in a Keyence microscope. To access the data, click or 
select the words “Appendix 3.”
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APPENDIX 4. ERG WAVE FORMS

Representative ERG wave forms in dark adapted Sod2loxP/

loxP RPE-cre mice taken after four months of treatment with 
0 mg/kg (Control), 0.5 mg/kg (low dose) or 3 mg/kg (high 
dose) of xaliproden. Flash intensity was 2.68 cds/m2. To 
access the data, click or select the words “Appendix 4.”

APPENDIX 5.

Deletion of Sod2 leads to extensive vacuolization of the RPE 
that is mitigated by treatment with xaliproden. A. Retinal 
hemisphere from a vehicle-treated mouse. B. retina from a 
mouse treated with 3 mg/kg of xaliproden. Plastic sections 
(1 μM) were stained with toluidine blue. Original magnifi-
cation was 40X. Insets are electronically magnified regions 
from the posterior retinas. To access the data, click or select 
the words “Appendix 5.”

APPENDIX 6. TUKEY’S MULTIPLE COMPARISON 
TEST OF DATA FROM TABLE 1. 

X=xaliproden; p=paraquat; PX=paraquat plus xaliproden; 
ns=not significant; *=0.01 to 0.05; **=0.001 to 0.01; 
***=0.0001 to 0.001. q=, where D is difference in means and 
SED is the standard error of that difference. To access the 
data, click or select the words “Appendix 6.”
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