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Tuberous sclerosis complex (TSC) and fragile X syndrome (FXS) are caused by mutations in negative regula-
tors of translation. FXS model mice exhibit enhanced metabotropic glutamate receptor-dependent long-term
depression (mGluR-LTD). Therefore, we hypothesized that a mouse model of TSC, ΔRG transgenic mice, also
would exhibit enhanced mGluR-LTD. We measured the impact of TSC2-GAP mutations on the mTORC1 and
ERK signaling pathways and protein synthesis-dependent hippocampal synaptic plasticity in ΔRG transgenic
mice. These mice express a dominant/negative TSC2 that binds to TSC1, but has a deletion and substitution
mutation in its GAP-domain, resulting in inactivation of the complex. Consistent with previous studies of
several other lines of TSC model mice, we observed elevated S6 phosphorylation in the brains of ΔRG mice,
suggesting upregulated translation. Surprisingly, mGluR-LTD was not enhanced, but rather was impaired in
the ΔRG transgenic mice, indicating that TSC and FXS have divergent synaptic plasticity phenotypes. Similar
to patients with TSC, the ΔRG transgenic mice exhibit elevated ERK signaling. Moreover, the mGluR-LTD
impairment displayed by the ΔRG transgenic mice was rescued with the MEK–ERK inhibitor U0126. Our re-
sults suggest that the mGluR-LTD impairment observed in ΔRG mice involves aberrant TSC1/2-ERK signaling.

© 2011 Published by Elsevier Inc.
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Tuberous sclerosis complex (TSC) is an autosomal dominant disor-
der that can cause hamartomas, benign and malignant neoplasms,
seizures, mental impairment and autism (DiMario, 2004). At the mo-
lecular level, TSC is caused by either the loss or malfunction of either
hamartin (TSC1) or tuberin (TSC2), which interact in a heterodimer
known as the TSC1/TSC2 complex, to negatively regulate mammalian
target of rapamycin complex 1 (mTORC1) (Cheadle et al., 2000).
mTORC1 functions as a molecular gatekeeper for cap-dependent
translation initiation in neurons. Activation of the phosphoinositide
3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)
signaling pathways results in the phosphorylation of TSC2 and inhibi-
tion of the GTPase-activating protein (GAP) activity of TSC2, which
leads to increased levels of Rheb-GTP. This type of signaling activates
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the mTOR complex 1 (mTORC1) and subsequent phosphorylation
ribosomal S6 kinase 1 (S6K1) and eukaryote initiation factor
4E-binding protein (4E-BP), key translation initiation regulators (Cai
et al., 2006; Jozwiak, 2006; Jozwiak et al., 2005; Orlova and Crino,
2010; Yang et al., 2006).

It has been estimated that sporadic cases of TSC range from 60 to
70% of the cases reported, and that TSC1 mutations are significantly
underrepresented compared to TSC2 (Jones et al., 1997). TSC2 gene
mutations are more frequent and result in a more severe phenotype
in TSC patients (i.e. seizures and learning disability), with the excep-
tion of reported cases of patients with no mutation identified, as
well as one TSC2 mutation that causes a more mild phenotype
(Camposano et al., 2009; Dabora et al., 2001; Jansen et al., 2006;
Kwiatkowski, 2003). In addition, the TSC2 gene is more prone than
the TSC1 gene to large deletions, rearrangements, andmissense muta-
tions. Of particular interest is the finding that missense mutations are
clustered within TSC2 exons 34–38, which encode for either Rap1GAP
or GAP3 (Maheshwar et al., 1997). The TSC2-GAP domain is an essen-
tial structural domain for the hydrolysis of GTP-bound Rheb to its
inactive GDP-bound form (Tee et al., 2003).

Studies have shown that either loss or malfunction of TSC1 and
TSC2 usually results in activation of S6K1 and enhanced ribosomal
protein S6 phosphorylation, resulting in defective regulation of cell
size and proliferation (Krymskaya, 2003; Uhlmann et al., 2004).
ate receptor-dependent long-term depression is impaired due to el-
plex, Neurobiol. Dis. (2011), doi:10.1016/j.nbd.2011.12.028
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Moreover, studies in hippocampal pyramidal neurons have shown
that the TSC pathway regulates soma size, the density and size of den-
dritic spines, and the properties of excitatory synapses, particularly
AMPA receptor-mediated currents (Tavazoie et al., 2005). Additional
studies have shown that loss of TSC1 function in the brain leads to
neocortical hyperexcitability associated with increased glutamate-
mediated excitation in both human tissue and mouse brain (Wang
et al., 2007). Finally, TSC2 heterozygous knockout mice were shown
to exhibit elevated hippocampal mTORC1 signaling, which led to ab-
normal long-term potentiation (LTP) and deficits in hippocampus-
dependent memory (Ehninger et al., 2008).

The ΔRG transgenic mouse has been developed, carrying a dele-
tion in TSC2 of amino acid residues 1617–1655 and a substitution
of amino acid residues 1679–1742, which interferes with both the
GAP domain and rabaptin-5 binding motif of TSC2, respectively
(Govindarajan et al., 2005; Pasumarthi et al., 2000). As a result, this
dominant/negative TSC2 protein is not able to hydrolyze GTP-bound
small G-proteins, such as Rap1 and Rheb (Govindarajan et al., 2005;
Pasumarthi et al., 2000; Zhang et al., 2003). Previous studies have
shown that ΔRG transgenic mice have increased expression of the
dominant/negative TSC2 driven by the cytomegalovirus (CMV) pro-
moter and develop skin and brain abnormalities consistent with
those observed in TSC patients (Bhatia et al., 2009; Govindarajan
et al., 2005; Sambucetti et al., 1989). In addition, behavioral studies
on ΔRG mice have revealed increased anxiety levels and mild deficits
in hippocampus-dependent learning and memory, consistent with
TSC-related neuropsychiatric symptoms (Chévere-Torres et al., in
press; Ehninger and Silva, 2010).
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Fig. 1. Overexpression of ΔRG TSC2 protein in mouse hippocampus. (A) Schematic represent
identification of ΔRG transgene showed a corresponding band at 280 bp. The wild-type ba
sagittal sections showed no obvious aberrant morphology. (D) Immunolocalization of TSC
areas CA1 and CA3, and the dentate gyrus (DG) of ΔRG mice compared to WT mice.
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Fragile X syndrome (FXS) is caused by loss of function mutations
in the RNA-binding protein, fragile X mental retardation protein
(FMRP), whose normal function is to suppress translation (Ronesi
and Huber, 2008). Consistent with this notion, mouse models of FXS
display increased protein synthesis, enhanced mTORC1 signaling,
and exaggerated metabotropic glutamate receptor-dependent long-
term depression (mGluR-LTD) (Hou et al., 2006; Huber et al., 2002;
Osterweil et al., 2010; Sharma et al., 2010). Based on evidence that
both TSC1/2 and FMRP proteins act as negative regulators of protein
synthesis and mTORC1 signaling, and the evidence that patients
with TSC and FXS can both display autism spectrum disorder, we hy-
pothesized that the mutations in TSC2-GAP domain in ΔRG mice
would result in similar synaptic plasticity alterations and mTORC1
dysregulation as observed in other mouse models of TSC and FXS
model mice. Herein we describe experiments with the ΔRG transgen-
ic mice that were conducted to determine whether they exhibit
hippocampal synaptic plasticity phenotypes consistent with other
mouse models of TSC and FXS.
 P
R
OMaterials and methods

Animals

ΔRG transgenic mice
Generation ofΔRGmice has been described previously (Govindarajan

et al., 2005). Mouse genotyping was performed by PCR using transgene-
and wild-type-specific primer sets.
E
D

ation of the dominant negative TSC2 ΔRG in mice that model tuberous sclerosis. (B) PCR
nd is detected at 500 bp. (C) Hippocampal morphology in ΔRG mice. Nissl staining of
2 in the mouse hippocampus. Increased levels of TSC2 were observed in hippocampal

ate receptor-dependent long-term depression is impaired due to el-
plex, Neurobiol. Dis. (2011), doi:10.1016/j.nbd.2011.12.028
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Fig. 2. ΔRG mice have normal basal synaptic transmission and paired-pulse facilitation.
(A) Input/output plot indicates that both wild-type (WT) and ΔRG mice had compara-
ble fEPSP slopes with increasing stimulation intensities, indicating normal postsynaptic
function (WT, n=16; ΔRG, n=13; 2–3 slices/mouse per genotype. pb0.05, ANOVA).
(B) Input/output plot indicates that both wild-type (WT) and ΔRG mice had compara-
ble fiber volley amplitude with increasing stimulation intensities, indicating normal
presynaptic function (WT, n=14; ΔRG, n=17; 2–3 slices/mouse per genotype.
pb0.05, ANOVA). (C) ΔRG mice exhibit normal paired-pulse facilitation (PPF) com-
pared to their WT littermates using interpulse intervals ranging from 10 to 300 ms.
The percent of facilitation was calculated from the ratio of the second fEPSP to the
first fEPSP (WT, n=8; ΔRG, n=8; 2–3 slices/mouse per genotype. pb0.05, ANOVA).
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Tsc1 floxed mice
Mice with floxed Tsc1 (mixed genetic background composed of

C57Bl/6J, 129/SvJae, BALB/cJ) were generated as described previously
(Kwiatkowski et al., 2002). For the generation of experimental mice,
we crossed heterozygous floxed Tsc1 (TSC1+/−) male mice and het-
erozygous floxed Tsc1 (TSC1+/−)–αCaMKII–Cre females. Mice were
genotyped using Cre-specific primers and primers that identify floxed
alleles of the Tsc1 locus. The wild-type mice used in this study were
TSC1+/+–αCaMKII–Cre and the experimental conditional heterozy-
gous mice used in this study were TSC1+/cko–αCaMKII–Cre (referred
to as TSC1+/− cKO) mice.

Tsc2 floxed mice
Mice with floxed Tsc2 (mixed genetic background composed

of C57Bl/6J, 129/SvJae) were generated as described previously
(Hernandez et al., 2007). For the generation of experimental mice,
we crossed heterozygous floxed Tsc2 (TSC2+/−) male mice and het-
erozygous floxed Tsc2 (TSC2+/−)–αCaMKII–Cre females. Mice were
genotyped using Cre-specific primers and primers that identify floxed
alleles of the Tsc2 locus. The wild-type mice used in this study were
TSC2++–αCaMKII–Cre and the experimental conditional homozy-
gous mice used in this study were TSC2cko/cko–αCaMKII–Cre (referred
to as TSC2−/− cKO) mice.

For all experiments, male age-matched littermates were used. For
biochemical experiments, 4–12 week-old mice were used, for LTP
experiments 8–12 week-old mice were used, and 4–6 week-old
mice were used for mGluR-LTD experiments. Mice were kept on a
12 h on–off light/dark cycle. Food and water were available at all
times. All procedures were approved by the New York University
Animal Care and Use Committee and followed the NIH Guidelines
for the use of animals in research.

Western blot analysis

Protein extracts were prepared by homogenizing hippocampal tis-
sue in ice-cold hypotonic lysis buffer (HLB) containing phosphatase
and protease inhibitor mixtures. Homogenates (20 μg) were resolved
via 4–12% SDS-PAGE and transferred to polyvinylidene difluoride
(PVDF) membranes. Immunoblotting was performed using standard
techniques. Rabbit polyclonal antibodies were used to detect
phospho-S6 (S235/236), phospho-S6 (S240/244), total S6, phospho-
S6K1 (T389), and total S6K1 at a 1:1000 dilution (Cell Signaling Tech-
nologies, Beverly, MA). 1:1000 rabbit anti-phospho-S6K1 (T389,
Millipore Corp., Billerica, MA). A monoclonal antibody was used to
detect TSC1 levels at a 1:1000 dilution (Cell Signaling, Beverly, MA)
in 5% BSA blocking solution. TSC2 levels were detected using a mono-
clonal antibody (CellSignaling, Beverly, MA) at a 1:1000 dilution in 5%
BSA blocking solution. The dilution used for phospho-4E-BP (T37/46)
and total 4E-BP antibodies was 1:500 (Cell Signaling Technologies,
Beverly, MA) in 5% BSA/I-Block. Phospho-ERK (T202/Y404) and total
ERK antibodies were diluted at 1:2000. β-actin and α-tubulin anti-
bodies (Sigma-Aldrich, St. Louis, MO) were diluted 1:10,000 in 5%
milk/T-TBS. Anti-rabbit and anti-mouse HRP-tagged antibodies
(Promega, Madison, WI) were diluted 1:5000 in 0.2% I-Block (Tropix,
Foster City, CA) and 1:10,000 in 5% milk/T-TBS, respectively. Blots
were developed using enhanced chemiluminescence detection (GE
Healthcare, Fairfield, CT).

Immunohistochemistry and histology

Sagittal sections (40 μm thick) were blocked with 1% BSA and
incubated overnight at 4 °C with TSC2 rabbit monoclonal antibody
(1:200; Epitomics, Burlingame, CA) in 1% BSA. Sections were washed
with PBS and incubated with secondary antibody for 30 min. Sections
then were incubated with ABC reagent (Pierce, Rockford, IL) and
immunostaining was visualized using the VIP substrate kit for
Please cite this article as: Chévere-Torres, I., et al., Metabotropic glutam
evated ERK signaling in the ΔRG mouse model of tuberous sclerosis com
F

peroxidase (Vector Laboratories, Burlingame, CA). Brains froma different
set of mice were used for histological studies. Sagittal sections (40 μm
thick) were mounted onto subbed slides. Nissl staining was performed
according to standard procedures. Sections from immunohistochemistry
and Nissl staining were viewed and photographed using a BX51
Olympus microscope (Olympus, UK) and Neurolucida 7 software (MBF
Bioscience, Willinston, VT).

Electrophysiology

Brains from age-matched littermate mice were removed and
transverse hippocampal slices (400 μm) were prepared. Hippocampal
slices were placed in cold-cutting solution (in mM: 110 sucrose,
60 NaCl, 3 KCl, 1.25 NaH2PO4, 28 NaHCO3, 5 D-glucose, 0.6 ascorbic
acid, 0.5 CaCl2, and 7 MgCl2, gassed with 95% O2/5% CO2). The slices
were incubated with a 50:50 cutting/artificial CSF (ACSF) solution
(in mM: 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 25 D-glucose,
ate receptor-dependent long-term depression is impaired due to el-
plex, Neurobiol. Dis. (2011), doi:10.1016/j.nbd.2011.12.028
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2 CaCl2, and 1MgCl2) for 15 min, followed by equilibration for 1 h in a
humid, oxygenated interface chamber continuously perfused with
32 °C ACSF at a rate of 2 ml/min. Field excitatory postsynaptic poten-
tials (fEPSPs) were evoked by stimulation of the Schaeffer collateral
pathway and recorded in stratum radiatum of area CA1 using a
glass recording pipette (1–4 MΩ). Stimulus intensity was adjusted
to elicit a fEPSP that was 50% of the maximum response in each
slice. Baseline measurements were taken for 30 min prior to delivery
of a single train of high-frequency stimulation (HFS; 100 Hz for 1 s) to
induce early phase LTP (E-LTP), prior to delivery of four, spaced trains
of HFS (100 Hz for 1 s, 5 min intertrain interval) to induce late phase
LTP (L-LTP), for 20 min prior to treatment with DHPG (50 μM, 10 min;
Ascent, Princeton, NJ) to induce mGluR-LTD, or for 20 min prior to
deliver 900 pulses of low-frequency stimulation (LFS; 1 Hz, 15 min)
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Fig. 3. ΔRG mice have normal hippocampal E-LTP, L-LTP and NMDAR-LTD but have impair
mice before and after receiving one train of HFS. Calibration: 5 mV, 5 ms. Bottom, a sing
n=7; 2–3 slices/mouse per genotype. p>0.05, ANOVA). (B). Top, representative fEPSPs in
four trains of HFS elicited similar levels of L-LTP in WT and ΔRG mice (WT, n=10; ΔRG, n=
in slices from WT and ΔRG mice before and after treatment with DHPG (50 μM, 10 min) to i
mice (WT, n=7; ΔRG, n=8; 2–3 slices/mouse per genotype. **pb0.01, ANOVA). (D) Top
receiving 900 pulses of LFS for 15 min. Bottom, LFS elicits similar levels of NMDR-LTD in
ANOVA).

Please cite this article as: Chévere-Torres, I., et al., Metabotropic glutam
evated ERK signaling in the ΔRG mouse model of tuberous sclerosis com
to induce N-methyl D-aspartate NMDA-LTD. When indicated, ACSF
was supplemented with U0126 (1 mM, Promega, Madison, WI). For
LTD rescue experiments, baseline measurements were taken for
30 min prior to application of DHPG (50 μM, 10 min) in the presence
of U0126 (1 μM). Afterward, fEPSPs were evoked and recorded in the
stratum radiatum of area CA1 in the presence of the inhibitor for 1 h.

Statistical analysis

GraphPad Prism data analysis software (San Diego, CA) was used
for graph production and statistical analysis was used to assess the
data. Student's t-tests and two-way ANOVAs were used for biochem-
ical and electrophysiological data analysis, respectively. Data repre-
sent mean±SEM, with pb0.05 used as significance criteria.
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ed mGluR-LTD. (A) Top, representative fEPSPs in slices from wild-type (WT) and ΔRG
le train of HFS elicits similar levels of E-LTP in WT and ΔRG mice (WT, n=7; ΔRG,
slices from WT and ΔRG mice before and after receiving four trains of HFS. Bottom,
15; 2–3 slices/mouse per genotype. p>0.05, ANOVA). (C) Top, representative fEPSPs

nduce mGLUR-LTD. Bottom, DHPG application induced LTD in WT mice, but not in ΔRG
, representative fEPSPs in slices from wild-type (WT) and ΔRG mice before and after
WT and ΔRG mice (WT, n=12; ΔRG, n=12; 3 slices/mouse per genotype. p>0.05,

ate receptor-dependent long-term depression is impaired due to el-
plex, Neurobiol. Dis. (2011), doi:10.1016/j.nbd.2011.12.028
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Fig. 4. mGluR-LTD is impaired in mice with conditional deletions of TSC1 and TSC2.
(A) Top, representative fEPSPs in slices from WT and TSC1+/− cKO mice before and
after treatment with DHPG (50 μM, 10 min) to induce mGLUR-LTD. Calibration:
5 mV, 5 ms. Bottom, DHPG application induced LTD in WT mice and impaired LTD in
TSC1+/− cKO (WT, n=4; TSC1+/− cKO, n=8; 2–3 slices/mouse per genotype.
*pb0.05, ANOVA). (B) Top, representative fEPSPs in slices from WT and TSC2−/− cKO
mice before and after treatment with DHPG (50 μM, 10 min) to induce mGLUR-LTD.
Bottom, DHPG application induced LTD in WT mice and impaired LTD in TSC2−/−

cKO (WT, n=8; TSC2−/− cKO, n=4; 1–2 slices/mouse per genotype. *pb0.05,
ANOVA). (C) Bar graph depicting average fEPSP slope 20 to 50 min after the washout
of DHPG. DHPG application induced same level of mGluR-LTD in ΔRG, TSC1+/− cKO,
and TSC2−/− cKO mice (ΔRG, n=8; TSC1+/− cKO, n=8; TSC2−/− cKO, n=4.
p>0.05, Student's t-test compared with ΔRG for the given time period).
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Results

ΔRG mice exhibit normal hippocampal LTP but impaired
mGluR-dependent LTD

First, we confirmed the presence of the ΔRG transgene (Fig. 1A) by
PCR techniques, detecting a band of 280 bp (Fig. 1B). We determined
whether the loss of TSC2-GAP function in ΔRG mice resulted in aber-
rant hippocampal morphological changes. Nissl staining of sections
from ΔRG mice indicated they have normal gross hippocampal mor-
phology (Fig. 1C). To determine whether TSC2 levels were increased,
we examined hippocampal tissue from ΔRG mice and their wild-type
littermates with immunocytochemistry and observed increased TSC2
levels in ΔRG mice compared to their wild-type controls (Fig. 1D),
consistent with previous studies (Bhatia et al., 2009).

Because mice with mutations in negative modulators of transla-
tion exhibit altered synaptic function (Richter and Klann, 2009), we
examined several forms of hippocampal synaptic plasticity in slices
from ΔRG mice. Analysis of synaptic output in response to increasing
stimulatory input indicated that the basal synaptic transmission
was normal in hippocampal area CA1 of the ΔRG mice (Fig. 2A).
Fiber volley amplitude measured with increasing stimulation also
was unaltered in ΔRG mice (Fig. 2B). We next examined paired-
pulse facilitation (PPF), a short-lasting form of presynaptic plasticity
evoked by temporally linked stimuli, and found that PPF was unal-
tered in ΔRG mice using both short and long interpulse intervals
(Fig. 2C). We proceeded to determine whether the ΔRG mice exhib-
ited altered long-term potentiation (LTP). We used a single train of
high-frequency stimulation (HFS) to induce early phase LTP (E-LTP)
and four, spaced trains of HFS to induce protein synthesis-
dependent late phase LTP (L-LTP) in hippocampal slices from wild-
type and ΔRG mice. We observed that both E-LTP and L-LTP in ΔRG
mice were indistinguishable from that in their wild-type littermates
(Figs. 3A and B). Thus, basal synaptic transmission, PPF, E-LTP, and
L-LTP are unaltered in ΔRG mice.

Previous studies have shown that a mouse model of fragile X
syndrome (FXS) exhibits enhanced hippocampal mGluR-LTD due to
improper regulation of translation and its uncoupling from mGluR
signaling (Osterweil et al., 2010; Ronesi and Huber, 2008; Sharma
et al., 2010). In addition, clinical studies have shown increased immu-
noreactivity for group I mGluRs (mGluR1/5) and phosphorylated
ribosomal protein S6 within cortical tubers and subependymal
giant-cell tumors of TSC specimens (Boer et al., 2008), suggesting
upregulation of mGluR-mTORC1 signaling similar to that observed
in FXS model mice (Sharma et al., 2010). Therefore, we hypothesized
that hippocampal mGluR-dependent LTD would be enhanced in the
ΔRG mice. Hippocampal slices from ΔRG mice and their wild-type lit-
termates were treated with DHPG (50 μM, 10 min), a selective ago-
nist of group I mGluRs, which resulted in a pronounced initial
depression of synaptic transmission in both ΔRG and wild-type
mice (Fig. 3C). This depression rapidly returned to near baseline
levels in ΔRG mice after drug washout, whereas in wild-type mice it
was followed by a robust long-lasting depression (Fig. 3C). This find-
ing indicates that mutations affecting the TSC2-GAP domain result in
an impairment of mGluR-LTD in the hippocampus. To determine the
receptor specificity of the LTD deficit in ΔRG mice, low-frequency
stimulation (LFS) was utilized to induce N-methyl D-aspartate
receptor-dependent LTD (NMDAR-LTD) in hippocampal slices from
ΔRG mice and their wild-type littermates. We observed that
NMDAR-LTD in ΔRG mice was identical to that of their wild-type
littermates (Fig. 3D). These findings indicate that the impaired LTD
is specific to altered mGluR-dependent signaling in the ΔRG mice.

We next tested whether mGluR-LTD also was impaired in mice
with a heterozygous conditional deletion of Tsc1 (TSC1+/− cKO)
and homozygous conditional deletion of Tsc2 (TSC2−/− cKO) in post-
natal forebrain neurons under the control of the αCaMKII promoter
Please cite this article as: Chévere-Torres, I., et al., Metabotropic glutam
evated ERK signaling in the ΔRG mouse model of tuberous sclerosis com
(αCamKII–Cre) (Supplementary Fig. 1). We found that both TSC1+/−

cKO and TSC2−/− cKO mice exhibited significant impairments in
mGluR-LTD compared to their wild-type controls (Figs. 4A and B).
Further analysis and comparison of the average fEPSP slopes from
ΔRG, TSC1+/− cKO and TSC2−/− cKO hippocampal slices during the
time period of 20 to 50 min after DHPG application revealed that all
three TSC mouse models have a similar level of LTD impairment
(Fig. 4C). These findings indicate that disruption of the TSC1/2
complex either by conditional deletion of Tsc1/2 genes or by muta-
tions affecting the TSC2-GAP domain results in deficient mGluR-LTD
expression in the hippocampus.
ate receptor-dependent long-term depression is impaired due to el-
plex, Neurobiol. Dis. (2011), doi:10.1016/j.nbd.2011.12.028
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Hippocampal mTORC1 signaling in ΔRG mice

The impairment in mGluR-LTD led us to examine mTORC1 signal-
ing in hippocampal homogenates from the ΔRG mice. Western blot
analysis indicated that although phosphorylation of serine 235/236
on ribosomal protein S6 was elevated in the ΔRG mice, phosphoryla-
tion of serine 240/244, a rapamycin-sensitive/mTORC1-dependent
site, was unaffected (Fig. 5A). Moreover, phosphorylation of eukary-
otic initiation factor 4E-binding protein (4E-BP) and p70 S6 kinase 1
(S6K1), direct substrates of mTORC1, were not altered in the ΔRG
mice (Fig. 5B). Because phosphorylation of serine 235/236 on S6 can
be regulated by both mTORC1 and ERK signaling (Pende et al.,
2004; Roux et al., 2004), we examined ERK1/2 phosphorylation in
the hippocampus of ΔRG mice. We observed that the ΔRG mice
exhibited a robust increase in ERK1/2 phosphorylation compared to
their wild-type littermates (Fig. 5C). These findings suggest that the
impaired mGluR-LTD observed in ΔRG mice is not a direct conse-
quence of elevated mTORC1 signaling as initially postulated, but
could be related to aberrant TSC1/2-ERK signaling.

We also examined ERK1/2 phosphorylation in the hippocampus of
TSC1+/− cKO and TSC2−/− cKOmice to determine whether enhanced
ERK signaling also is a feature of TSC1/2 deletion in the brain. We
found that ERK phosphorylation was not affected in the hippocampus
U
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R
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Fig. 5.mTORC1 signaling is unaltered, but S6 and ERK phosphorylation are elevated in the hi
as phosphorylation at serine 240/244 is not altered in the hippocampus of ΔRG mice (WT,
ΔRG n=3. p>0.05, Student's t-test) and S6K1 are unaltered (WT, n=4; ΔRG n=6. p>0.0
(WT, n=3; ΔRG n=3. *pb0.05, Student's t-test). Phospho-protein phosphorylation
immunoreactivity.
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of either TSC1+/− cKO or TSC2−/− cKO mice (Figs. 6A and B). These
data suggest that a distinct molecular mechanism may be responsible
for the deficit observed in mGluR-LTD in TSC1+/− cKO and TSC2−/−

cKO mice, while the mGluR-LTD impairment and aberrant ERK1/2
activation observed in ΔRG mice is because of TSC2-GAP mutations
in ΔRG mice.

Inhibition of MEK–ERK signaling rescues mGluR dependent-LTD in ΔRG
mice

Our findings of enhanced ERK phosphorylation led us to examine
the contribution of MEK–ERK signaling to the impaired mGluR-LTD
exhibited by the ΔRG mice. In wild-type mice, mGluR-LTD requires
activation of both mTORC1 and MEK–ERK signaling (Banko et al.,
2006; Gallagher et al., 2004; Hou and Klann, 2004; Sharma et al.,
2010). We utilized the MEK inhibitor U0126 (Favata et al., 1998)
and performed dose/response experiments in hippocampal slices
from wild-type mice in an attempt to find an effective dose at
which levels of ERK phosphorylation were reduced but not complete-
ly blocked and did not compromise the integrity of mGluR-LTD induc-
tion in wild-type mice (Fig. 7A). Western blot analysis indicated that
ERK phosphorylation was significantly reduced when slices were in-
cubated with U0126 at concentrations of either 1 μM (approximately
E
D
 P

R

ppocampus of ΔRG mice. (A) S6 phosphorylation at serine 235/236 is increased, where-
n=3; ΔRG n=4. *pb0.05, Student's t-test). (B) Phosphorylation of 4E-BP (WT, n=3;
5, Student's t-test) in ΔRG mice. (C) ERK1/2 phosphorylation is increased in ΔRG mice
immunoreactivity was normalized to tubulin and its corresponding total protein

ate receptor-dependent long-term depression is impaired due to el-
plex, Neurobiol. Dis. (2011), doi:10.1016/j.nbd.2011.12.028
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Fig. 6. ERK signaling is unaltered in the hippocampus of TSC1+/− cKO and TSC2−/− cKOmice. (A) Basal ERK1/2 phosphorylation is normal in TSC1+/− cKOmice (WT, n=3; TSC1+/−
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30% inhibition) or 5 μM (approximately 80% inhibition), but not
at 100 nM (Fig. 7A). To determine whether the elevated MEK–ERK
signaling was involved in the impaired mGluR-LTD, hippocampal
slices from ΔRG mice and their wild-type littermates were treated
with DHPG in the presence of U0126 (1 μM). Treatment with U0126
rescued the mGluR-LTD deficit observed in hippocampal slices from
ΔRG mice (Fig. 7B, right panel). The effect of U0126 was specific
to mGluR-LTD in ΔRG mice, because this concentration of the drug
did not significantly impact mGluR-LTD in wild-type littermates
(Fig. 7B, left panel). To determine whether treatment of ΔRG hippo-
campal slices with U0126 rescued mGluR-LTD back to the same
level of control groups (WT+vehicle; WT+U0126) we analyzed
the average fEPSP slopes from WT and ΔRG hippocampal slices in
the presence of the vehicle or U0126 during the time period of 20
to 50 min after the washout of DHPG. We found that treatment with
U0126 returned mGluR-LTD in ΔRG mice back to levels observed in
WT mice (Fig. 7C). We then determined whether treatment with
DHPG resulted in a further increase in ERK phosphorylation in ΔRG
mice. Hippocampal slices were treated with DHPG and area CA1
was isolated. Western blot data showed a significant increase of
ERK phosphorylation in slices from ΔRG mice treated with DHPG
(Fig. 8A). In addition, Western blot analysis from area CA1 of hippo-
campal slices collected after the rescue experiment confirmed the re-
duction of ERK phosphorylation by U0126 (1 μM) (Fig. 8B). Taken
together, these findings are consistent with the idea that the impaired
hippocampal mGluR-LTD exhibited by ΔRG mice is due to enhanced
MEK–ERK signaling.

Discussion

Our examination of hippocampal synaptic plasticity in the ΔRG
mouse model of TSC resulted in several unexpected findings. First,
we observed that both E-LTP and L-LTP were unaltered in ΔRG mice
(Figs. 3A and B). In contrast, E-LTP-inducing stimulation was shown
to produce stable, rapamycin-sensitive, L-LTP in TSC2 heterozygous
knockout mice (Ehninger et al., 2008). It appears that in the complete
absence of one allele, as in the case of TSC2 heterozygous knockout
Please cite this article as: Chévere-Torres, I., et al., Metabotropic glutam
evated ERK signaling in the ΔRG mouse model of tuberous sclerosis com
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Dmice, the impact on mTORC1 signaling is more robust and broader

than in the case of having specific mutations in the TSC2-GAP domain
as is present in the ΔRG mice. Indeed, we observed that mTORC1 sig-
naling was not significantly altered in the ΔRG mice (Fig. 4), whereas
mTORC1 signaling in both TSC1+/− cKO and TSC2−/− cKO mice were
enhanced as shown by increase phosphorylation of S6K1 (Supple-
mentary Fig. 1). The latter finding is consistent with recent studies
where the hippocampal deletion of the Tsc1 gene resulted in en-
hancedmTORC1 signaling (Bateup et al., 2011). The second unexpect-
ed finding was that mGluR-LTD was impaired in the ΔRG mice
(Fig. 3D). Moreover, the ΔRG mice exhibited normal NMDAR-LTD
in (Fig. 3C), similar to recent findings in mice with virally-mediated
deletion of the Tsc1 gene in the hippocampus (Bateup et al., 2011).
Thus, disruption of TSC2-GAP function, either by GAP mutations or
decreasing TSC1/2 heterodimer stability compromising TSC2-GAP
activity, interferes with distinct molecular mechanisms required for
the expression of mGluR-LTD but not NMDAR-LTD.

mGluR-LTD in both TSC1+/− cKO and TSC2−/− cKO mice was im-
paired at the same level as it was in ΔRG mice (Fig. 4C). Our findings
with TSC1+/− cKOmice (Fig. 4A) confirm recent studies showing that
the loss of Tsc1 impairs hippocampal mGluR-LTD (Bateup et al.,
2011). The impaired mGluR-LTD in ΔRG mice was unexpected be-
cause mGluR-LTD, ERK phosphorylation, and mTORC1 signaling are
enhanced in FXS model mice that lack FMRP, a translation suppressor
(Hou et al., 2006; Sharma et al., 2010). It is possible that there are dif-
ferent subcellular pools of ERK that are activated in ΔRGmice and FXS
mice that results in the phosphorylation of dissimilar ERK substrates
that impact mGluR-LTD differently. Interestingly, the mGluR-LTD
phenotype in the ΔRG mouse model of TSC differs from FXS model
mice lacking FMRP, but more closely approximates that observed in
transgenic mice overexpressing FMRP, which exhibit completely
abolished mGluR-LTD (Hou et al., 2006). Thus, ΔRG mice and FXS
mice are examples of two types of improper activation of ERK and
mTORC1 signaling in the brain. In ΔRG mice, robust enhancement
of ERK signaling results in impaired mGluR-LTD, whereas modest
activation of ERK and mTORC1 signaling in FXS model mice results
in enhanced mGluR-LTD (Hou et al., 2006; Sharma et al., 2010).
ate receptor-dependent long-term depression is impaired due to el-
plex, Neurobiol. Dis. (2011), doi:10.1016/j.nbd.2011.12.028
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Fig. 7. Impaired mGluR-LTD in ΔRGmice is rescued by inhibition of MEK–ERK signaling. (A) Incubation of wild-type (WT) hippocampal slices for 30 min with 100 nM U0126 did not
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WT mice before and after treatment with DHPG (50 μM, 10 min) to induce mGluR-LTD in the presence of either vehicle (DMSO) or U0126 (1 μM). Calibration: 5 mV, 5 ms. Bottom,
mGluR-LTD was induced by DHPG application in the presence of either vehicle or 1 μM U0126 in WT mice (WT+vehicle, n=14; WT+U0126, n=14; 1–2 slices/mouse per drug
treatment. p>0.05, ANOVA). Right panel: top, representative fEPSPs in slices from ΔRG mice before and after treatment with DHPG (50 μM, 10 min) to induce mGluR-LTD in the
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n=12; ΔRG+U0126, n=13; 1–2 slices/mouse per drug treatment. ***pb0.0001, ANOVA). The vehicle and U0126 were present before, during and after DHPG application.
(C) Left panel: bar graph depicting average fEPSP slope 20 to 50 min after the washout of DHPG in the presence of either vehicle or U0126 (WT+vehicle, n=14; WT+U0126,
n=14; ΔRG+vehicle, n=12; ΔRG+U0126, n=13; **pb0.01, one-way ANOVA;[**pb0.05, Student's t-test compared with ΔRG+vehicle for the given time period]).
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Although upregulated mTORC1 signaling has been reported in
other mouse models of TSC and FXS (Bateup et al., 2011; Ehninger
et al., 2008; Sharma et al., 2010), the mutation in the TSC2-GAP do-
main in the ΔRG mice appears to recruit an mTORC1-independent
mechanism in the hippocampus, the third unexpected finding in our
studies. Normally, TSC2 negatively regulates Rheb, which is immedi-
ately upstream of mTORC1 (Tee et al., 2003). Active, GTP-bound
Rheb also has been shown to negatively regulate Ras/B-Raf/C-Raf/
MEK signaling by disrupting B-Raf/C-Raf heterodimerization (Im
et al., 2002; Karbowniczek et al., 2006). B-Raf has a high basal kinase
activity toward MEK1/2, and is now available to participate in the
activation Rap1/Epac/B-Raf signaling pathway (Moodie et al., 1994;
Papin et al., 1996; Papin et al., 1998; Reuter et al., 1995; Wang et al.,
2006), which is then a potential mechanism for the upregulated
Please cite this article as: Chévere-Torres, I., et al., Metabotropic glutam
evated ERK signaling in the ΔRG mouse model of tuberous sclerosis com
ERK phosphorylation and S6 235/236 phosphorylation observed in
the ΔRG mice (Figs. 5A and C). In fact, the impaired mGluR-LTD
observed in ΔRG mice was rescued with the MEK inhibitor U0126,
supporting the idea that elevated MEK–ERK signaling contributes
to synaptic abnormalities in these mice (Fig. 7B). Moreover, the en-
hanced basal phosphorylation of ERK in ΔRGmice is further increased
by DHPG treatment (Fig. 8A). In contrast, conditional deletion of Tsc1
and Tsc2 genes in the forebrain did not result in upregulated ERK
phosphorylation (Fig. 6) Thus, it is possible that synaptic and behav-
ioral phenotypes in mice with conditional deletions of Tsc1 and Tsc2
might be due to exaggerated mTORC1 signaling (Supplementary
Fig. 1B) (Bateup et al., 2011; Ehninger et al., 2008) in contrast to
the ΔRG mice where the phenotypes are due to exaggerated ERK
signaling.
ate receptor-dependent long-term depression is impaired due to el-
plex, Neurobiol. Dis. (2011), doi:10.1016/j.nbd.2011.12.028
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Fig. 8. Biochemical analysis of MEK/ERK signaling inhibition during mGluR-LTD induction in ΔRG mice. (A) ERK phosphorylation is further increased in area CA1 of hippocampal
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An additional potential mechanism for the elevated ERK phos-
phorylation we observed in the ΔRG mice is altered activity of the
striatal-enriched protein tyrosine phosphatase (STEP). STEP is a phos-
phatase shown to regulate synaptic function by modulating NMDA
and AMPA receptor trafficking, as well as ERK phosphorylation and
nuclear translocation (Braithwaite et al., 2006; Paul et al., 2003;
Snyder et al., 2005). In addition, studies have shown that STEP trans-
lation is triggered by activation of group I mGluRs and subsequent
activation of the ERK, PI3K and mTORC1 pathways (Zhang et al.,
2008). It remains to be determined whether dysregulation of STEP
is involved in the elevated ERK phosphorylation observed in the
ΔRG mice.

Importantly, in accordance with our findings, analyses of brain
lesions and tumors associated with TSC have shown aberrantly
activated ERK that is correlated with increased phosphorylation of
ribosomal protein S6 (Jozwiak et al., 2008; Ma et al., 2005; Ma et al.,
2007). Thus, simultaneous treatment with inhibitors of both mTORC1
and ERK signaling pathways could be an effective treatment for TSC
patients. Future studies will be required to delineate the molecular
mechanism resulting in altered TSC1/2-ERK signaling and whether it
is involved in any cognitive and behavioral abnormalities displayed by
the ΔRG mice.
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UConclusions

Our studies herein show that disruptive mutations of the GAP
domain of TSC2 impair the expression of mGluR-LTD in ΔRG mice,
without affecting NMDAR-dependent LTD. Moreover, rescue experi-
ments with the MEK inhibitor U0126 supports the idea that
mutations in the TSC2-GAP domain in the ΔRG mice recruit an ERK-
dependent and mTORC1-independent mechanism, resulting in
impaired mGluR-LTD. In contrast, MEK–ERK signaling appears to be
normal but mTORC1 signaling is elevated in mice with conditional de-
letion of Tsc1 and Tsc2 genes, suggesting that impaired mGluR-LTD in
these mice is due to exaggerated mTORC1 signaling. Consequently,
ΔRG mice is a mouse model of TSC that can be used to study the
Please cite this article as: Chévere-Torres, I., et al., Metabotropic glutam
evated ERK signaling in the ΔRG mouse model of tuberous sclerosis com
E
Drole of both TSC2-GAP domain and TSC1/2-ERK signaling in abnormal

synaptic plasticity associated with TSC.
Supplementary materials related to this article can be found

online at doi:10.1016/j.nbd.2011.12.028.
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