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SUMMARY

Neural activity regulates dendrite and synapse
development, but the underlying molecular
mechanisms are unclear. Ca2+/calmodulin-
dependent protein kinase II (CaMKII) is an im-
portant sensor of synaptic activity, and the
scaffold protein liprina1 is involved in pre- and
postsynaptic maturation. Here we show that
synaptic activity can suppress liprina1 protein
level by two pathways: CaMKII-mediated deg-
radation and the ubiquitin-proteasome system.
In hippocampal neurons, liprina1 mutants that
are immune to CaMKII degradation impair den-
drite arborization, reduce spine and synapse
number, and inhibit dendritic targeting of re-
ceptor tyrosine phosphatase LAR, which is im-
portant for dendrite development. Thus, regu-
lated degradation of liprina1 is important for
proper LAR receptor distribution, and could
provide a mechanism for localized control of
dendrite and synapse morphogenesis by activ-
ity and CaMKII.

INTRODUCTION

Activity-dependent calcium entry into neurons induces

a variety of changes, ranging from transient posttransla-

tional modifications of synaptic proteins to altered gene

expression. At excitatory synapses, Ca2+ influx through

voltage-gated Ca2+ channels and ionotropic glutamate re-

ceptors (particularly NMDA receptors) triggers biochemi-

cal cascades that regulate synaptic function (Kennedy

et al., 2005; Sheng and Kim, 2002). Calcium signaling

pathways also control neuronal differentiation, axon path

finding, and dendrite morphogenesis (Wong and Ghosh,

2002).
Deve
A major player in all these processes is calcium/calmod-

ulin-dependent protein kinase II (CaMKII), a calcium-acti-

vated serine/threonine kinase that is abundant in neurons,

especially at postsynaptic sites (Lisman et al., 2002; Wong

and Ghosh, 2002). The CaMKII holoenzyme, consisting of

approximately 12 a and/or b subunits, is the most abun-

dant constituent of the postsynaptic density (PSD) (Cheng

et al., 2006). In mature hippocampal neurons, both

CaMKIIa and CaMKIIb are present at postsynaptic sites

but seem to play different roles (Fink et al., 2003; Thiagarajan

et al., 2002). Ca2+/calmodulin binding to CaMKII subunits

stimulates intersubunit Thr286 autophosphorylation (re-

sulting in an activated kinase) and leads to phosphoryla-

tion of many substrates (Lisman et al., 2002).

Several CaMKII substrates, such as the NR2B subunit

of NMDA receptors and the Drosophila homolog of mam-

malian CASK, Camguk, interact directly with CaMKII (Col-

bran and Brown, 2004; Griffith, 2004). These interactions

differ in their dependence on Ca2+/calmodulin binding

and autophosphorylation and require different domains

of the kinase; some even appear to be specific for either

CaMKIIa (densin-180) or CaMKIIb (F-actin) (Colbran and

Brown, 2004). The variety of CaMKII interactions with neu-

ronal proteins could target CaMKII to specific subcellular

domains and modulate CaMKII activity during synapse

formation (Fink et al., 2003), synaptic plasticity (Thiagara-

jan et al., 2002), axonal arborization, and dendrite mor-

phogenesis (Gaudilliere et al., 2004; Wu and Cline,

1998). By functioning as a local calcium sensor, CaMKII

exerts a critical influence on the architecture of the devel-

oping and plastic brain.

The liprina family of proteins (liprina1, -a2, -a3, -a4) was

originally identified by its interaction with the leukocyte

common antigen-related (LAR) family of receptor protein

tyrosine phosphatases (LAR-RPTPs) (Pulido et al., 1995).

Liprina proteins consist of an N-terminal coiled-coil region

that mediates homo- and heteromultimerization, followed

by three SAM domains making up the liprin homology

region (LH) that binds to the D2 (inactive phosphatase)
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Figure 1. Regulation of Liprina Levels by CaMKII and Proteasome in Hippocampal Neurons
(A) Representative images of rat hippocampal neurons (DIV13) double-labeled with rabbit anti-liprina antibody (green) and mouse anti-CaMKIIa an-

tibody (red). Only the merge is shown in color. Dendritic segments (lower panels) are enlarged to show colocalization of liprina and CaMKIIa in spines.

One single spine is enlarged (inset).

(B) Dendrites of hippocampal neurons triple-labeled with rabbit anti-liprina antibody (green), guinea pig anti-PSD-95 antibody (red), and mouse anti-

bassoon (blue). High-magnification panels (bottom) show three examples of synaptic clusters triple-stained for liprina (green), PSD-95 (red), and

bassoon (blue).

(C) Dendrites of hippocampal neurons at DIV17 treated with control vehicle (Mock), KN93 (10 mM), TTX (2 mM), or bicuculline (BICUC, 40 mM) for 24 hr

and double-stained for liprina (green) and PSD-95 (red), as indicated.

(D) Quantification of number of liprina and PSD-95 clusters per 10 mm dendrite, normalized to control. Hippocampal neurons at DIV17 were treated for

24 hr with control vehicle (�) or KN92 or KN93 (+) in combination with TTX and bicuculline (BICUC), as indicated. Histograms indicate mean ± SEM.
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domain of LAR-RPTPs (Serra-Pages et al., 1998). In cul-

tured cell lines, liprinas regulate LAR localization and clus-

tering (Serra-Pages et al., 1995, 1998). In Drosophila, both

liprina and LAR are required for photoreceptor axon tar-

geting in the visual system (Choe et al., 2006; Hofmeyer

et al., 2006) and normal synaptic morphology at the larval

neuromuscular junction (Kaufmann et al., 2002). Mutants

in the Caenorhabditis elegans liprina homolog syd-2 dis-

play an abnormally diffuse distribution of presynaptic

markers, lengthening of active zones, and impaired syn-

aptic transmission (Zhen and Jin, 1999).

In mammals, liprina proteins bind to several proteins

present at presynaptic sites (Schoch and Gundelfinger,

2006). Together with data showing altered synaptic vesi-

cle movement in Drosophila liprina mutants (Miller et al.,

2005), it is believed that in axons, liprina has a role both

in synaptic vesicle trafficking and active zone organiza-

tion. However, liprina is also localized in dendrites and

postsynaptic sites, suggesting additional roles (Ko et al.,

2003; Shin et al., 2003; Wyszynski et al., 2002). A postsyn-

aptic function for liprina has been described in hippocam-

pal neurons, where liprina binds to glutamate receptor

interacting protein (GRIP) and regulates synaptic targeting

of AMPA receptors (Wyszynski et al., 2002). In addition,

liprina associates with cadherin-b-catenin and, in con-

junction with LAR-RPTPs, regulates its trafficking; in this

way, liprina is implicated in the development and/or main-

tenance of dendritic spines and excitatory synapses

(Dunah et al., 2005).

Here we describe a novel activity-dependent regulation

of liprina by CaMKII, in which liprina1 is degraded in

response to CaMKII phosphorylation. Liprina1 levels in

hippocampal neurons are additionally regulated by the

ubiquitin-proteasome system (UPS) via the E3 ubiquitin

ligase anaphase promoting complex (APC). Expression of

liprina1 mutants insensitive to CaMKII degradation specif-

ically inhibits the dendritic targeting of LAR receptors and

leads to reduced dendrite arborization and synapse num-

ber. These findings provide a molecular basis for activity-

dependent regulation of dendrite and synapse develop-

ment by CaMKII, liprina1, and LAR-RPTPs.

RESULTS

Downregulation of Liprina in Hippocampal Neurons

by CaMKII and Proteasome-Mediated Degradation

In screening for synaptic proteins whose abundance is

regulated by synaptic activity, we discovered that liprina

levels fluctuate greatly in response to altered activity in

cultured neurons. Liprina proteins are present at both pre-

synaptic and postsynaptic sites in the brain (Dunah et al.,
Develo
2005; Wyszynski et al., 2002). In cultured hippocampal

neurons (17 days in vitro; DIV17) fixed with ice-cold meth-

anol, immunostaining with antibody made against liprina1

shows a punctate pattern as previously described (Ko

et al., 2003; Shin et al., 2003; Wyszynski et al., 2002), co-

localizing with CaMKIIa in dendritic spines (Figure 1A). Li-

prina puncta also showed extensive overlap with PSD-95,

a postsynaptic density protein, and with bassoon, a pre-

synaptic active zone protein (Figure 1B), indicating the

presence of liprina at synapses. The intensity of liprina

staining was generally weaker and more variable than

the staining of these synaptic markers, such that some

synapses had robust liprina staining while other synapses

showed undetectable signal (Figures 1A and 1B). Quanti-

fication revealed that �90% of liprina puncta overlapped

with PSD-95 and bassoon clusters, but only �30% of

the PSD-95 and bassoon coclusters contained liprina

staining (Figure 1B; see Figure S1C in the Supplemental

Data available with this article online).

Suppressing activity with tetrodotoxin (TTX, 2 mM, 24 hr)

strongly increased liprina expression, whereas increasing

synaptic activity with the GABAA receptor antagonist

bicuculline (40 mM, 24 hr) reduced liprina expression in

cultured hippocampal neurons (DIV17) (Figure 1C). The

density of liprina clusters doubled in TTX-treated cells,

associated with increased immunofluorescence intensity

of the clusters (Figures 1C and 1D; Figures S1A and

S1C). Bicuculline profoundly reduced liprina puncta den-

sity and brightness of staining. PSD-95 immunostaining

showed similar bidirectional trends with altered activity,

but the magnitude of fluctuation was much lower than

that of liprina (Figures 1C and 1D; Figures S1A and

S1C). Western blotting confirmed that liprina protein levels

fell with increased activity (bicuculline) and rose with inac-

tivity (TTX) (Figure 1E).

We tested whether CaMKII might play a role in the activ-

ity-dependent loss of liprina, because this protein kinase

is activated by synaptic excitation. Bath application of

KN93, an inhibitor of CaMKII, strongly enhanced liprina

protein levels (Figure 1E) and increased the brightness

and density of liprina clusters (Figures 1C and 1D).

KN92, an inactive analog of KN93, had no effect on liprina

levels by Western blot or by immunocytochemistry (Fig-

ures 1D and 1E). Again, PSD-95 showed a similar trend

with KN93, but the degree of increase was much smaller

than that of liprina (Figures 1C and 1D). Thus, KN93

mimics the effect of TTX on liprina expression. More im-

portantly, KN93 prevented the effect of bicuculline and

‘‘rescued’’ liprina back to control levels (Figures 1D and

1E); however, liprina expression in neurons treated with

both KN93 and bicuculline did not reach the high level
(E) Hippocampal cultures (DIV17) were treated for 24 hr with control vehicle (�) or KN92 or KN93 (+) in combination with TTX or BICUC, as indicated.

Total lysates were immunoblotted for liprina and a-tubulin as a loading control.

(F) Dendrites of hippocampal neurons at DIV17 treated with control vehicle (Mock), lactacystin (5 mM), MG132 (20 mM), or a combination of BICUC and

MG132 for 24 hr and double-stained for liprina (green) and PSD-95 (red).

(G) Number of liprina and PSD-95 clusters per 10 mm dendrite (mean ± SEM). Hippocampal neurons at DIV17 were treated for 24 hr with control ve-

hicle (�) or MG132 (+), with or without BICUC, as indicated. The number of clusters is normalized to unstimulated conditions.

(H) Hippocampal cultures (DIV17) were treated for 24 hr with control vehicle (�) or MG132 (+), with or without BICUC, as indicated. Total lysates were

immunoblotted for liprina and a-tubulin as a loading control. *p < 0.05, **p < 0.005, ***p < 0.0005.
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seen with KN93 alone (Figures 1D and 1E). These data

indicate that CaMKII plays an important role in activity-

dependent loss of liprina, but suggest that additional

independent mechanisms might be involved.

Because the UPS plays an important role in synaptic

protein turnover (Ehlers, 2003), we tested whether protea-

some inhibitors affected liprina expression in hippocam-

pal neurons. MG132 (20 mM, 24 hr) or lactacystin (5 mM,

24 hr) caused a robust increase in liprina protein levels

and in liprina cluster density (Figures 1F–1H; Figures

S1B and S1C). MG132 also blocked the reduction of

liprina by bicuculline (Figures 1F and 1G; Figures S1B

and S1C); however, liprina level or cluster number did

not reach the high values seen with MG132 alone (Figures

1F–1H). These data indicate that proteasome-mediated

degradation keeps the ‘‘basal’’ level of liprina low and con-

tributes substantially to activity-induced loss of liprina;

however, additional mechanisms seem to be involved,

as noted above for CaMKII. Another possibility is that

CaMKII- and proteasome-mediated downregulation of

liprina1 activity only partially depend on synaptic activity,

as induced by bicuculline. Together, our results suggest

that downregulation of liprina in hippocampal neurons

is mediated by CaMKII activity as well as proteasome

degradation.

RNAi Knockdown of APC Increases Liprina

In Drosophila neurons, liprina may be regulated by APC,

which acts as an E3 ubiquitin ligase (van Roessel et al.,

2004). APC consists of >11 core subunits, including cata-

lytic subunits APC2 and APC11, and is activated by regu-

latory subunits such as Cdh1 (Konishi et al., 2004). We

tested whether APC might regulate liprina1 in mammalian

neurons by using small hairpin RNA (shRNA) expressed

from the pSuper vector to knock down endogenous

APC2 and Cdh1. Hippocampal neurons were transfected

at DIV13 for 4 days with two independent APC2-shRNA

(APC2-shRNA1 or APC2-shRNA2) or Cdh1-shRNA con-

structs, together with b-galactosidase (b-gal) to mark

transfected neurons. To better preserve the b-gal staining,

these cultures were fixed with formaldehyde, which re-

sults in a more diffuse staining of liprina in dendrites in ad-

dition to the punctate synaptic pattern seen predomi-

nantly under methanol fixation conditions (Figures S2A

and S2D). In neurons transfected with APC2-shRNA or

Cdh1-shRNA constructs (Konishi et al., 2004), the inten-

sity of liprina immunostaining in dendrites was drastically

increased (�100%–150% increase compared to control

neurons) (Figures S2A and S2B). The intensity of PSD-

95, revealed by double-staining, was unchanged in the

same neuron (Figure S2C). Together with the MG132

and lactacystin results, these findings indicate that the

UPS, particularly that mediated by APC, downregulates

expression of liprina in hippocampal neurons.

CaMKIIa/b Knockdown by RNAi Increases

Liprina in Hippocampal Neurons

To test which CaMKII isoform regulates liprina levels in

hippocampal neurons, we knocked down expression of
590 Developmental Cell 12, 587–602, April 2007 ª2007 Elsevie
endogenous CaMKIIa or CaMKIIb by transfection of

shRNA-expressing constructs. When tested in COS-7

cells, the CaMKIIa-shRNA construct specifically inhibited

protein expression of CaMKIIa, and CaMKIIb-shRNA spe-

cifically suppressed CaMKIIb (Figure S3E). These RNAi

constructs were cotransfected in hippocampal neurons

(DIV13) with green fluorescent protein (GFP) to visualize

morphology. Cells transfected with CaMKIIa-shRNA

showed �70% reduction in immunostaining for CaMKIIa

in dendrites and cell body, with no change in CaMKIIb

staining intensity (Figures S3A–S3D). CaMKIIb-shRNA-

transfected neurons showed diminished staining for both

CaMKIIb (�80% reduction) and CaMKIIa (�60% reduc-

tion) (Figures S3A–S3D). Because CaMKIIb-shRNA did

not affect CaMKIIa expression in COS-7 cells, we believe

that the loss of neuronal CaMKIIa induced by CaMKIIb-

shRNA is likely a secondary consequence of CaMKIIb

knockdown than due to nonspecificity of CaMKIIb-shRNA

(for instance, CaMKIIb might be required for formation of

stable CaMKIIa/b hetero-oligomeric holoenzymes).

We measured liprina by immunostaining in hippocam-

pal neurons transfected at DIV13 with CaMKIIa-shRNA,

CaMKIIb-shRNA, or both. b-gal was cotransfected to

mark and outline the transfected cell. These cultures

were fixed with formaldehyde. Four days after transfection

of CaMKII-shRNA (DIV13+4), the integrated intensity per

area (diffuse plus punctate staining) of liprina immunos-

taining in the dendrite shaft was increased compared to

control (�30% increase for CaMKIIa-shRNA, �50% in-

crease for CaMKIIb-shRNA or CaMKIIa- + CaMKIIb-

shRNA) (Figures S2D and S2E). The intensity of PSD-95

staining was unchanged (data not shown). These RNAi

data extend the KN93 pharmacological results, confirming

that CaMKII inhibits liprina protein expression in hippo-

campal neurons. At least the CaMKIIa isoform is involved;

however, because CaMKIIb-shRNA reduces expression

of both CaMKIIa and CaMKIIb, we cannot be certain

whether CaMKIIb directly regulates liprina levels.

Active CaMKII Decreases Liprina1 Protein Level

in COS Cells

To investigate the mechanism by which liprina1 expres-

sion is suppressed by CaMKII, we first turned to heterolo-

gous cells. In COS-7 cells, exogenous myc-tagged

liprina1 was expressed as a band of�160 kDa (Figure 2A).

Remarkably, when constitutively active CaMKIIa (T286D)

was cotransfected, myc-liprina1 levels became virtually

undetectable (Figure 2A). Cotransfection of wild-type

CaMKIIa(WT) or kinase-dead CaMKIIa(K42R) mutant did

not affect liprina1 protein levels (Figure 2A). A similar de-

gree of suppression by cotransfected CaMKIIa(T286D)

was seen for untagged liprina1, liprina1 tagged with GFP

or HA, and liprina1 expressed from different promoters

(CMV, SV40, chicken b-actin), with or without the 30 and

50 untranslated regions of liprina1 (data not shown). These

results argue that CaMKII is not acting on the transcription

or mRNA stability of liprina1.

We also analyzed the effect of CaMKII on liprina1 by an

immunocytochemical assay. Liprina1 cotransfected into
r Inc.
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Figure 2. Induction of Active CaMKIIa Suppresses Liprina1
Protein Levels

(A) COS-7 cells were double-transfected for 2 days with myc-liprina1

plus empty vector control, wild-type (WT) CaMKIIa, constitutively ac-

tive CaMKIIa(T286D), or kinase-dead CaMKIIa(K42R), as indicated.

Whole-cell lysates from transfected COS-7 cells were immunoblotted

for liprina1 and CaMKII to detect the transfected constructs, and for

endogenous cortactin as a loading control.

(B) Number of liprina1-immunopositive cells (mean ± SEM; normalized

to control) in COS-7 cultures transfected with GFP-liprina1 and CaMKII

constructs as in (C).

(C) Representative images of COS-7 cells cotransfected with GFP-

liprina1 (green) plus control vector, CaMKIIa(WT), CaMKIIa(T286D),

or CaMKIIa(K42R) (red), as indicated. The merge is shown in color at

right. The scale bar represents 100 mm. *p < 0.05, **p < 0.005, ***p <

0.0005.
Develo
COS-7 cells with empty vector control showed on average

�94 liprina1-immunoreactive cells per 1.7 mm2 in a 50%–

70% confluent cell layer (Figures 2B and 2C). When

liprina1 was cotransfected with constitutively active

CaMKIIa(T286D), however, only very few cells (�6 per

1.7 mm2) expressed liprina1 by immunostaining (Figures 2B

and 2C). Cotransfection with wild-type (WT) or kinase-

dead (K42R) CaMKIIa did not reduce the number of

liprina1-immunoreactive cells (Figures 2B and 2C).

To confirm that the loss of liprina1 protein is due to the

expression of CaMKIIa protein, we used a doxycycline

(DOX)-inducible expression system (TETon) and followed

over time the level of liprina1 protein following the induction

of active CaMKIIa. COS-7 cells were triply transfected with

GFP-liprina1, CaMKIIa(T286D) under the control of a tetra-

cycline-responsive element (pTRE-CaMKIIa[T286D]), and

a tetracycline transcriptional activator (rtTA) expression

construct. At time 0 (no DOX added), liprina1 protein was

robustly detected by immunoblot in the absence of

CaMKIIa signal (Figure 2D). From 4 to 12 hr after adding

DOX, liprina1 expression declined steadily, inversely corre-

latedwithaprogressively risingCaMKIIa (Figure2D).At12hr

after DOX addition, liprina1 was almost undetectable. No

effect on liprina1 protein expression was seen 12 hr after

induction of CaMKIIa(K42R) or CaMKIIa(WT) using the

same TETon system (Figure 2D). Similar results were ob-

tainedwith theseconstructs using an immunocytochemical

assay (Figures S4A–S4C). Induction of CaMKIIa(T286D),

but not CaMKIIa(K42R) or CaMKIIa(WT), caused a dra-

matic reduction in the number of liprina1-positive cells

over time (Figures S4A–S4C; data not shown). These

data provide compelling evidence that active CaMKIIa

suppresses liprina1 protein levels, with a time course sug-

gesting active degradation of liprina1 stimulated by

CaMKIIa.

In COS-7 cells triply transfected with liprina1, PSD-95,

and CaMKIIa, PSD-95 protein level was unaffected by

CaMKIIa(T286D), even while liprina1 disappeared

(Figure S4D). Immunocytochemistry analysis showed sim-

ilar results: the percentage of PSD-95-immunoreactive

COS cells was unaltered by cotransfection with

CaMKIIa(T286D) (Figure S4E). CaMKIIa(T286D) also had

no effect on GRIP1 (a multi-PDZ protein that binds to

liprina1 and AMPA receptors), cortactin, liprina2, or liprinb1

(proteins closely related to liprina1) (Figures S4F and S4H).

Thus, the effect of CaMKIIa(T286D) appears relatively

specific for liprina1.

Liprina1 protein expression in COS cells was also strongly

inhibited by cotransfection of active CaMKIIb(T286D), but

not by wild-type or inactive CaMKIIb(K43R) (Figure S4G).

Polo-like kinase-2 (Plk-2, also known as serum-inducible

kinase; SNK) did not affect liprina1 levels in COS cells

(D) COS-7 cells were cotransfected with myc-liprina1, pTRE-CaMKIIa

(WT, T286D, or K42R), and rtTA expression construct. Two days after

transfection, cells were treated with doxycycline (DOX) for various

times as indicated (0–12 hr), and were immunoblotted for liprina1

and CaMKII to detect the transfected constructs and for endogenous

cortactin as a loading control.
pmental Cell 12, 587–602, April 2007 ª2007 Elsevier Inc. 591
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Figure 3. C Terminus and PEST Motif but Not Proteasome Are Required for CaMKII-Mediated Liprina1 Degradation in COS-7 Cells

(A) Diagram of liprina1 mutant constructs (GFP or HA tag was placed at N terminus).

(B) Number of cells immunopositive for indicated liprina1 mutant constructs (mean ± SEM; normalized to control vector; not shown) when cotrans-

fected with CaMKIIa(T286D). *p < 0.05, **p < 0.005, ***p < 0.0005.

(C) Representative images of COS-7 cells cotransfected with CaMKIIa(T286D) (red) and GFP-liprina1 mutant constructs (green), as indicated. Color

merge is shown at right. The scale bar represents 100 mm.

(D) COS-7 cells cotransfected with indicated GFP-liprina1 mutant constructs plus control vector, CaMKIIa(T286D), or CaMKIIa(K42R), and immuno-

blotted for the transfected liprina1 construct using HA or GFP antibodies.
592 Developmental Cell 12, 587–602, April 2007 ª2007 Elsevier Inc.
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(data not shown), even though it strongly suppressed

expression of SPAR, a Rap guanosine triphosphatase acti-

vating protein (Pak and Sheng, 2003). Thus, both CaMKIIa

and CaMKIIb can specifically suppress liprina1 expres-

sion in heterologous cells, consistent with RNAi results

obtained in neurons (see Figure S2). The data are most

simply explained by active CaMKII stimulating the degra-

dation of liprina1.

C Terminus and PEST Motif Are Essential

for CaMKII-Dependent Liprina1 Degradation

As a first step toward the molecular mechanism behind

this effect, we investigated the domains of liprina1 re-

quired for CaMKII-mediated suppression (Figure 3A).

GFP-tagged wild-type and deletion mutants of liprina1

were cotransfected with CaMKIIa(T286D), CaMKIIa(K42R),

or empty vector in COS-7 cells. Expression of liprina1

constructs was quantified by immunocytochemistry and

western blotting assays (Figures 3B–3D). The C-terminal

region of liprina1 contains four potential CaMKII phos-

phorylation sites (RXXS/T) which are conserved in human,

rat, mouse, and chicken liprina1 proteins. The liprina1

splice variant lacking the last 18 amino acids (liprina1a)

(Wyszynski et al., 2002), which deletes two of the putative

phosphorylation sites, and a C-terminal deletion mutant

lacking the last 88 residues (liprina1DC [1–1112]), which

is missing all four phosphorylation sites, were still effi-

ciently suppressed by CaMKIIa(T286D) and unaffected

by CaMKIIa(K42R) (Figure 3D).

A mutant with a larger C-terminal truncation, liprina1DCM

(containing residues 1–712), was not degraded by

CaMKIIa(T286D), implying that the C-terminal half of

liprina1 contains determinants for CaMKII-induced degra-

dation (Figures 3B–3D). In this region there is a PEST (pro-

line-, glutamate-, serine-, threonine-rich) sequence (amino

acids 771–795), which is conserved among mammalian

liprina1 proteins, and which has a PEST score of +8.83

based on the PEST-FIND program (Rechsteiner and

Rogers, 1996). A PEST score of more than 5 denotes

a very strong proteolytic degradation signal. Deleting the

PEST sequence (liprina1DPEST) resulted in somewhat re-

duced susceptibility of liprina1 to CaMKII suppression,

compared with wild-type or DN (Figures 3B–3D). Combin-

ing the PEST deletion with the C-terminal deletion left a

liprina1 mutant (liprina1DPESTDC) that was completely in-

sensitive to suppression by CaMKIIa(T286D) (Figures 3B–

3D). We also mutated the serine residues of the putative

C-terminal CaMKIIa phosphorylation sites to alanine

(S1139A, S1168A, S1194A, S1201A) in a DPEST back-

ground, giving rise to liprina1DPEST/S-A. The liprina1D-

PEST/S-A mutant also was insensitive to CaMKIIa(T286D)
Develo
(Figures 3B and 3D). Thus, both the central PEST se-

quence and the C-terminal putative CaMKII phosphoryla-

tion sites are important for liprina1 degradation by active

CaMKII.

Proteasome Is Not Involved in CaMKIIa-Dependent

Liprina1 Degradation in COS-7 Cells

The PEST motif is known to promote rapid protein turn-

over; however, the pathways responsible for degrading

PEST proteins are not always clear. Several PEST proteins

have been reported to be degraded by calpain or protea-

some, but degradation of other PEST-containing proteins

seems independent of these mechanisms (Rechsteiner

and Rogers, 1996). Two distinct proteasome inhibitors,

MG132 and lactacystin, increased the basal level of both

liprina1 and liprina1DPESTDC expressed in COS-7 cells

(Figure 3E; data not shown), implying that the proteasome

is involved in downregulating basal liprina1 levels. In con-

trast, expression of cotransfected PSD-95 was unaffected

(Figure 3E). Importantly, however, 4, 8, and 12 hr MG132

treatment did not prevent the loss of liprina1 induced by

cotransfection of CaMKIIa(T286D) (Figures 3F and 3G;

data not shown), indicating that proteasome function is

not required for elimination of liprina1 by active CaMKII.

In addition, liprina1 degradation by active CaMKII was

not blocked by calpain inhibitors (ALLN, ALLM) or inhibi-

tors of lysosomal degradation (chloroquine, leupeptin,

ammonium sulfate) (data not shown). Overall, these data

indicate that although it contributes to basal lowering of

liprina1, proteasomal activity is not essential for CaMKII-

mediated degradation of liprina1 in heterologous cells.

Interaction of CaMKII and Liprina1

In Vitro and In Vivo

Our mutational analysis suggests that liprina1 is a target of

CaMKII phosphorylation; therefore, we tested whether

liprina1 and CaMKII interact biochemically. From cotrans-

fected COS-7 cells, liprina1 was readily coimmunopreci-

pitated with CaMKIIa wild-type and K42R (Figures 4A

and 4B). For this experiment, we could not use the

CaMKIIa(T286D) construct, as active CaMKII causes a

drastic reduction in the amount of liprina1. Nonimmune

rabbit IgG immunoprecipitated neither liprina1 nor CaMKII,

and liprina2, cortactin, and PSD-95 could not be copreci-

pitated with wild-type CaMKIIa (Figures 4A–4C), indicating

a specific interaction between liprina1 and CaMKIIa. The

association with CaMKIIa was lost in the liprina1 mutant

DCM but retained in DN, indicating that CaMKII interacts

with the C-terminal half of liprina1 (Figure 4D). Interestingly,

the mutant DPESTDC, although insensitive to CaMKII-

mediated degradation, could be coimmunoprecipitated
(E) COS-7 cells cotransfected with myc-PSD-95 plus GFP-liprina1 or GFP-liprina1DPESTDC were treated (+) or not treated (�) with 5 mg/ml MG132

for 4 hr and immunoblotted for myc and GFP. Endogenous a-tubulin was used as a loading control.

(F) COS-7 cells transfected with GFP-liprina1 or GFP-liprina1DPESTDC plus control vector (�) or CaMKIIa(T286D) (+) were treated (+) or not treated

(�) with 5 mg/ml MG132 for 4 hr as indicated, and immunoblotted for GFP or CaMKIIa. Endogenous b-catenin was used as a positive control for

MG132 treatment.

(G) Representative images of COS-7 cells cotransfected with GFP-liprina1 (green) and control vector or CaMKIIa(T286D) (red), and treated with

5 mg/ml MG132 for 4 hr.
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with CaMKII (Figure 4D), implying that the SAM domains

are responsible for interaction with CaMKII (see Figure 3A

for diagram). Notable in this respect is the recent discovery

that the CaMKII-like domain of scaffold protein CASK inter-

acts with the SAM region of liprina1 (Olsen et al., 2005).

To test for an in vivo interaction, we performed coimmu-

noprecipitations from deoxycholate extracts of rat cere-

bral cortex. Consistent with earlier studies (Dunah et al.,

2005; Wyszynski et al., 2002), GRIP and GluR2/3 were ro-

bustly coprecipitated with the liprina antibody (Figure 4E).

Liprina antibodies also precipitated significant amounts of

CaMKIIa. In the inverse reaction, CaMKIIa antibodies

brought down a small amount of liprina and GRIP in addi-

tion to precipitating CaMKIIa, but no detectable GluR2/3

(Figure 4E). As a negative control, PSD-95 and cortactin

were not coprecipitated by liprina or CaMKIIa antibodies

and none of the analyzed proteins was pelleted by nonim-

mune rabbit IgG (Figure 4E). These biochemical data sug-

Figure 4. CaMKII Interaction with Liprina1 In Vitro and In Vivo

(A and B) COS-7 cells cotransfected with wild-type (WT) GFP-CaMKIIa

and myc-liprina1 (A), or GFP-CaMKIIa(K42R) and myc-liprina1 (B),

were immunoprecipitated with nonimmune rabbit IgG or CaMKII anti-

bodies. Each immunoprecipitation reaction is shown in three lanes: I,

input to IP reaction; S, supernatant remaining after IP; P, precipitated

pellet. The I, S, and P samples were immunoblotted for the indicated

proteins.

(C and D) COS-7 cells cotransfected with GFP-CaMKIIa(WT) and indi-

cated proteins (C) or liprina1 mutant constructs (D) were immunopre-

cipitated and immunoblotted as in (A) and (B).

(E) Coimmunoprecipitation of CaMKII and liprina from rat cortex. De-

oxycholate extracts were immunoprecipitated with nonimmune rabbit

IgG or CaMKIIa or liprina antibodies, and immunoblotted for the pro-

teins indicated at right.
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gest that a subset of CaMKIIa is present in some fraction

of the liprina protein complex in vivo as well as in vitro,

which is consistent with the colocalization of liprina and

CaMKII clusters at synaptic sites (Figures 1A and 1B).

Liprina1DPESTDC and Liprina1DPEST/S-A Inhibit

Dendrite Morphogenesis and Reduce Synapse

Density

What is the functional significance in neurons of liprina1

degradation by CaMKII? To address this question, we

transfected hippocampal neurons (DIV13) with liprina1

wild-type versus liprina1DPESTDC or liprina1DPEST/S-A

mutants that can no longer be degraded by CaMKII.

Note, however, that these mutants are sensitive to protea-

some downregulation, insofar as their basal levels are in-

creased by MG132 (Figure 3E). Neuronal morphology

was visualized by cotransfected monomeric red fluores-

cent protein (mRFP). Four days after transfection, neurons

transfected with liprina1DPESTDC or liprina1DPEST/S-A

showed stunted dendritic arbors relative to neurons trans-

fected with liprina1 (Figure 5A; data not shown). Com-

pared with vector control, overexpression of wild-type

liprina1 had no effect on any dendrite parameter mea-

sured (total dendritic length, number of primary dendrites

or dendrite tips, and density or size of dendritic protru-

sions) (Figures 5A and 5D–5F). Total dendritic length

decreased by �30% in liprina1DPESTDC- and liprina1D-

PEST/S-A-transfected neurons (Figures 5A and 5D). Den-

drite branching was also reduced, as quantified by total

number of dendrite tips (�40% decrease; Figure 5E) or

by Sholl analysis (which measures the number of den-

drites crossing circles at various radial distances from

the cell soma; Figure 5C). Liprina1DPESTDC and lipri-

na1DPEST/S-A also decreased (by �25%) the number

of primary dendrites (defined as dendrites longer than

21 mm emanating directly from the soma) (Figure 5F). Al-

though overexpression of wild-type liprina1 had no effect

on dendrite morphology, KN93 treatment of wild-type

liprina1-transfected cells mimicked the effects of overex-

pression of CaMKII-nondegradable mutants on dendrite

morphology (Figures 5A and 5C–5F). As expected, levels

of wild-type liprina1 protein were increased in cells treated

with KN93. In summary, the expression of ‘‘stable’’ liprina1

caused a decrease in the number of primary, secondary,

and higher-order dendrites and a reduction in the dendritic

arbor complexity in cultured hippocampal neurons. We

conclude that CaMKII-mediated degradation of liprina1

is essential for normal growth and maturation of the

dendritic tree.

The density of dendritic protrusions and spines (defined

as protrusions of 1�4 mm in length that showed a clear

‘‘head’’) at DIV17 was reduced by liprina1DPESTDC and

liprina1DPEST/S-A, but unaffected by wild-type liprina1

(Figures S5A and S5B). The mean length and width of re-

maining spines were not substantially different in neurons

overexpressing any of the liprina1 constructs (Figures

S5A, S5C, and S5D). In accord with a reduction in the

number of spines, we observed an �40% fall in the den-

sity of bassoon puncta on neurons transfected with
r Inc.
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liprina1DPEST/S-A (liprina1: 4.89 ± 0.21 per 10 mm length

of dendrite versus liprina1DPEST/S-A: 2.74 ± 0.28 per

10 mm length of dendrite), an indication that neurons ex-

pressing CaMKII-insensitive liprina1 harbor fewer presyn-

aptic contacts. Thus, in addition to reduced dendrite

branching, CaMKII-nondegradable liprina1 mutants im-

pair the development and/or maintenance of spines and

synapses.

LAR-Liprin Interfering Constructs and LAR-shRNA

Inhibit Dendrite Morphogenesis

We investigated which domain of liprina1 is important for

dendrite morphology by overexpressing liprina1 deletion

constructs liprina1DN, liprina1SAM, and liprina1DCM

(see Figure 3A), assuming that the mutants work as dom-

inant negatives. Four days after transfection, neurons ex-

pressing liprina1DN and liprina1SAM showed shorter

dendritic arbors relative to neurons transfected with con-

trol vector or liprina1DCM (Figures 5B and 5D), similar to

liprina1DPESTDC- and liprina1DPEST/S-A-transfected

cells. Dendrite branching was also reduced, as quantified

by dendrite tips (�30% decrease; Figure 5E), primary den-

drites (�25% decrease; Figure 5F), and Sholl analysis

(Figure 5C). The density of dendritic protrusions and

spines at DIV17 was reduced by liprina1DN and liprina1-

SAM, but unaffected by liprina1DCM (Figures S5A–S5D).

These data argue that the SAM domain of liprina1 is im-

portant for supporting dendrite morphogenesis and nor-

mal spine number.

The LAR-RPTPs bind to the SAM domains in liprina1

(Serra-Pages et al., 1995). Therefore, we investigated the

effect on dendrite morphogenesis of overexpression of

the isolated liprina binding domain of LAR (LAR-D2, fused

to a myristoylation motif for membrane targeting), or

knockdown of LAR by LAR-shRNA (Dunah et al., 2005).

Expression of either LAR-D2 or LAR-shRNA caused

marked pruning of the dendritic arbor (Figures 5B–5F)

and loss of dendritic protrusions and spines (Figures

S5A–S5D). In summary, the expression of constructs

that disrupt the liprina1-LAR interaction or that suppress

endogenous LAR expression caused a reduction in den-

drite arborization and spine density in hippocampal neu-

rons, similar to the effects seen with neurons expressing

CaMKII-nondegradable liprina1 constructs.

Liprina1 Increases Surface Expression

and Clustering of LAR Receptors

Liprina has been suggested to regulate LAR localization

and clustering in mammalian cell lines (Serra-Pages

et al., 1995, 1998). It is difficult to study the regulation of

endogenous LAR trafficking in neurons because LAR pro-

tein is not highly expressed and our LAR antibodies work

insufficiently in immunostaining. We developed a simpli-

fied way to investigate LAR receptor trafficking, which

makes use of the CD8 glycoprotein as a reporter in protein

trafficking (Hoogenraad et al., 2005). A GFP-tagged CD8

construct containing only the extracellular and transmem-

brane domain of CD8 accumulated in the endoplasmic re-

ticulum of HeLa cells, colocalizing with calreticulin (Fig-
Deve
ures S6A and S6B); expression on the cell surface was

weak (Figure S6C). Fusing the entire cytoplasmic domain

of LAR (LARC) to the CD8 construct allowed the chimeric

construct (CD8-LARC) to leave the endoplasmic reticulum

and accumulate in the perinuclear Golgi region (Fig-

ure S6D), where it colocalized with the trans-Golgi marker

BICD2 (Figure S6E).

In the absence of coexpressed liprina1, very little CD8-

LARC was associated with the cell surface (Figure 6E).

Cotransfection with liprina1, liprina1DPESTDC, or liprina1D-

PEST/S-A resulted in greatly increased expression of

CD8-LARC at the surface in a patchy pattern in almost all

cells (Figures 6A, 6B, and 6F). Coexpression of liprina1DCM,

lacking the LAR binding domain, did not change the

distribution of CD8-LARC, which remained in a Golgi

pattern (Figure 6C). Similarly, the CD8-LARCDD2 con-

struct lacking the liprin binding site was unaffected by

cotransfection of liprina1DPESTDC (Figure 6D). These

data in heterologous cells suggest that one function of

liprina1 (both wild-type and CaMKII-nondegradable mutants)

is to drive LAR receptors out of the Golgi and deliver them

to the cell surface.

CaMKII-Nondegradable Liprina1 Mutants Impair

Dendritic Targeting of LAR

We next investigated LAR trafficking in hippocampal neu-

rons. When overexpressed in neurons, CD8-LARC was

found, in addition to the perinuclear Golgi region (Fig-

ure S7B), in a punctate pattern in dendrites (Figure 7A,

left, inset, arrowheads) and at low levels on the cell surface

(Figure S7A). Overexpression of wild-type liprina1 has no

effect on the CD8-LARC distribution (Figure 7B). However,

cotransfection of liprina1DPESTDC and liprina1DPEST/S-

A mutants caused redistribution of CD8-LARC from Golgi

and accumulation of CD8-LARC in neuronal cell bodies

(Figures 7C–7E; Figure S7B). In these neurons, CD8-

LARC was predominantly found in a patchy pattern along

the periphery of the cell body, suggesting an increased

surface expression on the soma (Figure 7C; Figure S7B).

The ratio of cell body (soma without the Golgi)/Golgi im-

munostaining for CD8-LARC increased 2-fold in liprina1D

PESTDC- and liprina1DPEST/S-A-expressing neurons

compared to control (Figure 7E), indicating improved exit

from Golgi toward the somatic surface, similar to the find-

ings in HeLa cells. Despite the increased expression on

neuronal somata, the punctate staining of CD8-LARC in

the dendrites was greatly reduced (Figure 7C). The ratio

of dendrite/Golgi immunostaining for CD8-LARC de-

creased 2-fold in neurons expressing liprina1DPESTDC

or liprina1DPEST/S-A (Figure 7D), signifying that

CaMKII-nondegradable liprina1 mutants impair dendritic

targeting of LAR, despite improving Golgi-to-somatic sur-

face transport. The distribution of CD8-LARCDD2, lacking

the liprina binding site, was unaffected by CaMKII-nonde-

gradable liprina1 constructs (Figures 7D and 7E). In neu-

rons transfected with HA-liprina1 and treated with KN93

(10 mM, 24 hr), the ratio of cell body/Golgi intensity of

CD8-LARC immunostaining increased 2-fold and the den-

drite/Golgi ratio decreased 2-fold compared to untreated
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liprina1-transfected cells (Figures 7D and 7E), mimicking

the effect of overexpressed CaMKII-nondegradable

liprina1 mutants. Thus, prevention of liprina1 degradation

by CaMKII, either by mutation of liprina1 or by drug inhibi-

tion of CaMKII, reduces the trafficking of CD8-LARC to

dendrites. Together, these data indicate that liprina1 deg-

radation by CaMKII is needed specifically for the dendritic

targeting of LAR, thereby promoting normal development

of dendrites and synapses.

DISCUSSION

Activity-Dependent Regulation of Liprina1 by Two

Mechanisms: CaMKII and Proteasome

Activity regulates the expression and degradation of many

neuronal proteins, including several scaffolds of the PSD

(Ehlers, 2003). One of the major cellular mechanisms con-

trolling protein turnover is the UPS (Hegde and DiAntonio,

2002; Murphey and Godenschwege, 2002). Ubiquitin-pro-

cessing enzymes play an essential role in neural develop-

ment, including synapse growth and development, growth

cone guidance, and dendritic remodeling (Kuo et al., 2005;

Murphey and Godenschwege, 2002). In most cases, the

importance of the UPS for neural development is inferred

from pharmacological inhibitor or genetic loss-of-function

studies, and the specific proteins whose level is controlled

by ubiquitination and proteasomal proteolysis are un-

known. Here we found liprina1 levels to be particularly

susceptible to activity-dependent regulation. The sup-

pression of liprina1 protein by neural activity depends at

least partially on CaMKII and proteasome function. Be-

cause inhibitors of either CaMKII or proteasome coun-

tered the effect of activity but did not elevate liprina1 to

the high levels seen with the inhibitors alone, we hypothe-

size that synaptic activity stimulates at least two pathways

for liprina1 degradation: one depending on CaMKII phos-

phorylation, and another depending on the UPS. This idea

is supported by the fact that proteasome inhibitors do not

prevent the degradation of liprina1 by CaMKII in COS

cells. In addition, the data in neurons can be explained if

CaMKII- and proteasome-mediated turnover of liprina1

depend only partially on synaptic activity. Cotreatment

of neurons with KN93 and MG132 did not significantly in-

crease liprina1 levels compared to either drug alone (data

not shown), which does not support the idea that CaMKII

and proteasomes lie in independent pathways for liprina1

degradation. Thus, our findings in heterologous cells do

not rule out that CaMKII degradation of liprina1 occurs
Deve
via the UPS in neurons, or that crosstalk occurs between

these pathways.

Our findings indicate that CaMKII affects liprina1 levels

via protein degradation as opposed to a reduction in tran-

scription or translation. To our knowledge, this is the first

example of CaMKII signaling in which CaMKII activity

stimulates degradation of a specific protein. The degrada-

tion of liprina1 by CaMKII involves a central PEST se-

quence and C-terminal phosphorylation sites in liprina1.

At least 12 CaMKII consensus phosphorylation sites are

present in liprina1. Phosphorylation of the C-terminal tail

and CaMKII sites close to the PEST sequence may recruit

degradation factors necessary for proteolysis (Garcia-Alai

et al., 2006). Alternatively, CaMKII phosphorylation may

induce conformation changes in liprina1 which open up

additional regions involved in rapid protein degradation.

Although mutation analysis in liprina1 suggests a direct

role for CaMKII phosphorylation in liprina1 degradation,

we cannot rule out that another factor is activated by

CaMKII which subsequently causes liprina1 degradation.

A PEST motif is absent in liprina2, which is not degraded

by active CaMKII, but present in the middle part of liprina4,

which additionally contains two CaMKII phosphorylation

sites in its C terminus. Thus, liprina4 might also be de-

graded by active CaMKII.

Given that liprina1 exists on both sides of mammalian

excitatory synapses (Dunah et al., 2005; Ko et al., 2003;

Shin et al., 2003; Wyszynski et al., 2002), does activity reg-

ulate the level of liprina at pre- or postsynaptic sites?

CaMKII is extremely abundant in the postsynaptic density

(Cheng et al., 2006; Lisman et al., 2002), but also exists in

axon terminals (Liu and Jones, 1997). Moreover, activity

results in Ca2+ elevation in both pre- and postsynaptic

compartments. Light microscopy cannot definitely distin-

guish between pre- and postsynaptic accumulation of

liprina1. However, we believe that the regulation of liprina1

levels by CaMKII occurs substantially in the postsynaptic

compartment because RNAi knockdown of CaMKII in

neurons resulted in increased immunostaining of dendritic

liprina1 in a cell-autonomous fashion (Figure S2). Regula-

tion of liprina1 by APC must also occur at least in part on

the postsynaptic side, because Cdh1 RNAi boosted

liprina1 signal in dendrites of transfected neurons. Finally,

CaMKII-insensitive liprina1 caused robust changes in

dendrite morphology in transfected neurons, implying

that this mutant can have a postsynaptic (or dendritic) lo-

cus of action. Nevertheless, our study does not rule out an

effect of CaMKII or APC on liprina1 in presynaptic com-

partments.
Figure 5. Impairment of Dendrite Morphogenesis by Liprina1 Mutants Insensitive to CaMKII Degradation, LAR-Liprin Interfering

Constructs, and LAR-shRNA

(A) Morphology of hippocampal neurons (visualized in the RFP channel) cotransfected at DIV13 for 4 days with control vector, GFP-liprina1, or GFP-

liprina1DPESTDC, plus mRFP as transfection marker. ‘‘+ KN93’’ indicates treatment for 24 hr with 10 mM KN93 to inhibit CaMKII. GFP-liprina1 signals

are shown in insets.

(B) Representative images (RFP channel) of hippocampal neurons cotransfected at DIV13 for 4 days with control vector, LAR-liprin interfering con-

structs, or LAR-shRNA, plus mRFP to visualize the transfected cell. The scale bar represents 20 mm.

(C) Sholl analysis of hippocampal neurons transfected at DIV13 for 4 days with liprina1, LAR, and shRNA constructs.

(D–F) Quantification of total dendritic length (D), number of dendritic tips (E), and number of primary dendrites (F) in hippocampal neurons transfected

at DIV13 for 4 days with indicated constructs (mean ± SEM). *p < 0.05, **p < 0.005, ***p < 0.0005.
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Figure 6. Liprina1 and Liprina1 Mutants Insensitive to CaMKII Degradation Promote CD8-LARC Exit from Golgi and Surface

Expression in HeLa Cells

(A–D) HeLa cells were double-transfected with CD8-LARC plus HA-liprina1 (A), HA-liprina1DPESTDC (B), HA-liprina1DCM (C), or with CD8-LARCDD2

plus HA-liprina1DPESTDC (D), and then fixed and stained with anti-HA (red) and anti-CD8 (green) antibodies. The merge is shown in color at right.
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Importance of CaMKII Degradation of Liprina1

for Dendrite Morphogenesis

CaMKII has been implicated in neuronal morphogenesis

and synapse maturation (Lisman et al., 2002; Wong and

Ghosh, 2002). CaMKII signaling can regulate dendrite de-

velopment by local processes or by inducing transcrip-

tional programs in the nucleus (Gaudilliere et al., 2004).

CaMKII activity promotes growth and stabilization of den-

drites in Xenopus optic tectal neurons (Wu and Cline,

1998) and of dendritic spines in hippocampal neurons

(Fink et al., 2003). The precise mechanisms by which

CaMKII influences dendrite and synapse development re-

main poorly understood. Based on our findings, we pro-

pose that CaMKII-mediated phosphorylation and deg-

radation of liprina1 is one molecular mechanism for

coupling activity to dendrite and synapse morphogenesis.

Liprina1 mutants resistant to CaMKII degradation impair

dendrite arborization and synapse density; thus, the ability

of liprina1 protein to be degraded in response to CaMKII

activation is essential for normal dendrite and synapse de-

velopment. Because CaMKII can be stimulated locally by

synaptic activity, suppression of liprina1 by CaMKII might

be used to promote dendrite growth or stability locally in

regions of high synaptic activity. Our data correlate well

with previous studies showing that activity—specifically

stimulation of glutamate receptors in mature neurons—

stabilizes dendritic arbors (Cline, 2001), and that inhibition

of CaMKII with RNAi or peptide inhibitors reduces den-

dritic arborization and synapse formation (Fink et al.,

2003).

How does liprina1 regulate dendrite morphology? Two

obvious candidates are the known liprina1 binding pro-

teins GRIP1 (Wyszynski et al., 2002) and LAR-RPTP

(Serra-Pages et al., 1998, 2005). GRIP1 has already

been implicated in dendrite development (Hoogenraad

et al., 2005); however, CaMKII-nondegradable mutants

of liprina1 had no effect on the distribution of GRIP1 in hip-

pocampal neurons (data not shown). Here we show that

RNAi knockdown of LAR and disruption of the LAR-liprina

interaction reduce dendritic arbor complexity in cultured

hippocampal neurons very similarly to that seen with

CaMKII-nondegradable liprina1 mutants. Previous work

has suggested that liprina is involved in the localization

and distribution of LAR in mammalian cells (Serra-Pages

et al., 1995, 1998). Our experiments indicate that liprina1

drives LAR receptors out of the Golgi and enhances LAR

expression and clustering on the neuronal cell body, likely

associated with an increased surface expression. This

function was independent of liprina1 degradation by

CaMKII in that DPESTDC and DPEST/S-A mutants of liprina1

were fully active in this respect. However, specifically

the targeting of LAR to dendrites was abrogated by

liprina1 mutants that are immune to CaMKII degradation,

as well as by KN93 block of CaMKII activity, even though
Develo
both manipulations greatly increase liprina1 levels in neu-

rons. Because postsynaptic LAR is critical for dendrite de-

velopment and synapse/spine maturation (this study; Du-

nah et al., 2005), the loss of dendritic targeting of LAR can

largely explain the phenotype of CaMKII-nondegradable

liprina1 overexpression.

So why is the degradation of liprina1, rather than just its

expression, important for LAR distribution and dendrite

and synapse development? Although we can only manip-

ulate CaMKII activity or liprina1 expression at a global

level within individual neurons, the physiological role of

CaMKII regulation of liprina-LAR occurs most likely at

the local level. We hypothesize that the local regulation

of liprina1 levels by CaMKII controls the trafficking of

LAR to specific regions within dendrites and/or to specific

synapses. The CaMKII-mediated degradation of liprina1

provides an attractive mechanism for targeting liprina1-

LAR complexes to active synapses where the kinase is

switched ‘‘on.’’ We suggest that at such sites, the LAR

cargo bound to liprina1 would be ‘‘unloaded’’ due to CaM-

KII-mediated degradation of liprina1 to promote local

growth and stabilization of dendritic structures. However,

it is possible that the mutations that block CaMKII-mediated

degradation interfere in some other way with liprina1’s

trafficking function in dendrites.

In yeast, a specific myosin motor, Myo2p, moves vacu-

oles to the yeast bud by binding to the vacuole-specific

Myo2p receptor Vac17p (Tang et al., 2003). The transport

complex is disrupted specifically in the bud by degrada-

tion of Vac17p, depositing the vacuole in the bud.

Vac17p contains a PEST sequence that is required for

its degradation, and loss of this PEST sequence causes

mistargeting of vacuoles (Tang et al., 2003). By analogy

to Vac17p, liprina1 also interacts with motor proteins

(kinesin-1 and kinesin-3; KIF1A) (Miller et al., 2005; Shin

et al., 2003). Liprina1 also contains a PEST sequence im-

portant for rapid degradation, and causes a cargo target-

ing phenotype when it is rendered nondegradable. An at-

tractive idea is that PEST protein degradation in yeast and

hippocampal neurons represent different aspects of

a general molecular mechanism for directed motor traf-

ficking.

EXPERIMENTAL PROCEDURES

Antibodies and Reagents

Rabbit liprin (1069) antibody was previously described (Dunah et al.,

2005; Wyszynski et al., 2002). Details of other antibodies and reagents

are available in the Supplemental Data.

DNA Constructs

The following mammalian expression plasmids have been described:

myc-liprina1, myc-liprina2, HA-liprinb1 (Wyszynski et al., 2002),

pSuper-Cdh1-shRNA (Konishi et al., 2004), pSuper-LAR-shRNA, and

myr-HA-LAR-D2 (Dunah et al., 2005). CD8-LARC and CD8-LARCDD2
Arrowheads indicate CD8-LARC localization in the perinuclear Golgi region (A, C, and D). Coexpression of liprina1 (A) or liprina1 mutants insensitive to

CaMKII degradation (B) enhance surface expression of CD8-LARC. The scale bars represent 10 mm.

(E and F) HeLa cells transfected with CD8-LARC and control GFP (E) or GFP-liprina1DPESTDC (F) and immunostained for surface CD8 expression

under nonpermeabilizing conditions. Liprina1 mutants insensitive to CaMKII degradation enhance surface expression of CD8-LARC.
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were generated by PCR cloning the intracellular C-terminal tail with

and without the D2 domain of human LAR in frame with the extracellu-

lar and transmembrane domain of CD8 (Hoogenraad et al., 2005).

CaMKII-shRNA sequences were targeted against rat CaMKIIa mRNA

(GenBank accession number NM_012920) and rat CaMKIIb mRNA

(GenBank accession number NM_021739) corresponding to nucleo-

tides 77–95 (CaMKIIa-shRNA) and 173–191 (CaMKIIb-shRNA), re-

spectively. APC2-shRNA sequences were targeted against rat APC2

(GenBank accession number BC107471; APC2-shRNA1: nucleotides

1554–1572 and APC2-shRNA2: nucleotides 1482–1500). For details

of other constructs, see the Supplemental Data.

Primary Hippocampal Neuron Cultures, Transfection,

and Immunocytochemistry

Primary hippocampal cultures were prepared from embryonic day 18

(E18) rat brains and transfected with various DNA constructs using Lip-

ofectamine 2000 (Invitrogen) as described in the Supplemental Data.

For immunocytochemistry, neurons were fixed for 10 min with 4%

formaldehyde/4% sucrose in phosphate-buffered saline (PBS) at

room temperature or ice-cold 100% methanol at �20�C, washed

two times for 30 min with PBS at room temperature, and incubated

with primary antibodies in GDB buffer (0.2% BSA, 0.8 M NaCl, 0.5%

Triton X-100, 30 mM phosphate buffer [pH 7.4]) overnight at 4�C. De-

tails of immunocytochemistry, image analysis, and quantification as

well as immunoprecipitation and immunoblotting are available in the

Supplemental Data.

Supplemental Data

Supplemental Data include seven figures and Supplemental

Experimental Procedures and are available at http://www.

developmentalcell.com/cgi/content/full/12/4/587/DC1/.
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