
Life: The Excitement of Biology 7(2) ……………………………….….………………………… 82 
 

Variation in Bioacoustic Characteristics in 
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Abstract: Bioacoustics is an interdisciplinary science that combines biology, acoustics, and 
mathematics. This discipline can be used to study population ecology and behavior. 
Furthermore, we can use this tool to assess a population and suggest if a species of interest may 
be in a transitional state of becoming a new species by allopatric speciation. Amphibians 
communicate via sound and the environment has a key role in metabolism and sound dispersion. 
By analyzing temporal and spectral properties of acoustical communication in anurans, we can 
understand better how these animals are evolving to cope with their ever-changing environment. 
We studied the variation in acoustic parameters among five populations each of the red-eye 
coqui, Eleutherodactylus antillensis (Reinhardt and Lutken, 1863) and the common coqui, E. 
coqui Thomas, 1966 across the Puerto Rico Bank. These species are changing their 
vocalizations. Some populations have higher sound frequencies than other conspecific 
populations; other nocturnal species have populations with different temporal patterns of sound 
production. We found strong variation among the five populations examined for each species. 
In, E. antillensis, the size of the organism relates to temporal variation in sound production (i.e., 
inter-note interval and total call duration) and did not relate to spectral differentiation. In E. 
coqui, the population living at highest elevation above sea level assessed had a spectral footprint 
no other population shares, probably due to geographic isolation from other conspecific 
populations that live in lower elevations.  
 
Keywords: Bioacoustics, Eleutherodactylus, Eleutherodactylus coqui, Eleutherodactylus 
antillensis, Puerto Rico, microevolution, communication, sound spectrogram, speciation,  
 

Introduction 
Natural History 

Amphibians are important components of many ecosystems because their 
total number and biomass affect ecosystem function through complex trophic 
interactions (Dodd 2010). However, these vertebrates are not immune from the 
ravages that are happening on Earth. Herpetofaunas are susceptible to sudden 
environmental changes (Sala et al. 2000, Cushman 2006), and these changes can 
either diminish their populations or, in extreme cases, extinguish them. Some of 
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the factors that affect animal populations are land use, such as agriculture, 
recreational uses, construction of urban areas and military training sites; all 
leading to habitat fragmentation (Gibbons et al. 2000, Thrush et al. 2008, Ríos-
Franceschi et al. 2016). In such cases, many amphibians are unable to escape from 
the area that has been fragmented or modified, mainly because of their low 
mobility (Vredeburg and Wake 2007). 

Puerto Rico lies within the Caribbean biodiversity hotspot (Cox and Moore 
2000). Puerto Rican diversity consists of approximately 26,410 species of plants, 
fungi and animals (Joglar 2005). These species, within the Puerto Rican Bank 
have been isolated, by physical barriers, such as by the rising sea levels after the 
last glacial maximum (Heatwole et al. 1981 and Figure 1, below) for 
approximately 8,000–10,000 years, creating different niches and augmenting the 
diversity in the archipelago. This can provide a privileged location to study 
evolution in a microscale for many different taxa, including amphibians. 
 

 

Figure 1. Map of the Puerto Rican Bank (a and b) and St. Croix (c) illustrating the 
topography of the islands and the approximate geographic location of the sampling 
localities of Eleutherodactylus antillensis. The outermost line in a, b and c indicates the 
approximate land configuration at maximum sea level (-120 m, Siddall et al. 2003), during 
the Last Glacial Maximum (circa 26.5-19 kya). The thicker line depicts the current extent 
of land area. Map was modified from Barker et al. 2012 by José R. Almodóvar. 

 
Overall morphological similarity and intrapopulation variation of 

morphological features make some species identification challenging (Angulo 
and Reichle 2008, Bickford et al. 2007). Species descriptions for a variety of taxa 
have traditionally relied primarily on morphological traits (Mayden 1997, Angulo 
and Reichle 2008). Some cryptic species cannot be identified by morphological 
analysis alone and scientists need to use other characteristics. Acoustic signals are 
the main vehicle of communication in most anurans (Ryan 1988, Gerhardt and 
Huber 2002, Röhr and Juncá 2013). Herpetologists often use acoustic, or sonic, 
signals in species identification and diagnosis for taxa that use such signals to 
communicate (Angulo and Reichle 2008).  For example, advertisement calls have 
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been used to resolve the systematics of several groups within the family 
Eleutherodactylidae (Heyer 1984, Angulo and Reichle 2008). Although most 
species may have more than one kind of vocalization, the advertisement call is the 
most widespread and it is the focus of most bioacoustics’ studies of frogs 
(Gerhardt 1994, Gerhardt and Huber 2002, Röhr and Juncá 2013). Advertisement 
calls are conspicuous acoustic signals emitted by males of most species of anurans 
(Erdtmann et al. 2011). These calls generally have multiple purposes, such as 
female attraction, territory defense against conspecific males (Duellman and 
Trueb 1994, Wells 2007; Erdtmann et al. 2011, Papes and Ladich 2011, Röhr 
2013, Velázquez et al. 2013) and informing about a male’s physical condition. On 
the other hand, animal communication signals have an important role in species 
divergence, promoting reproductive isolation and speciation (Coyne and Orr 
1998, Velázquez et al. 2013). Variation of behavioral characters across their 
geographical distribution has been the subject of studies aiming to establish the 
degree of divergence among populations (Coyne and Orr 1998; Stafford et al. 
2001, Coyne and Orr 2004, Quispe et al. 2009, Velázquez et al. 2013).  

Clinal variation of advertisement calls related to geographical distance 
between populations (Nevo and Capranica 1985; Wilczynski and Ryan 1999; 
Castellano et al. 2002; Giacoma and Castellano 2001; Bernal et al. 2005; Pröhl et 
al. 2006, 2007; Velázquez et al. 2013) or the relevance of adaptations to different 
environmental conditions (Hunter and Krebs 1979, Boughman 2002, van Dongen 
et al. 2010) has been reported for different anurans. These conditions have been 
affected by climate change and these effects force species to meet dynamic 
thermal environments and may jeopardize the performance of their basic 
physiological functions, especially in ectothermic organisms, like frogs (Pörtner 
and Knust 2007, Huey et al. 2009, Kearney et al. 2009, Duarte et al. 2011, Llusia 
et al. 2013). Predictions of the compensatory response of ectotherms to climate 
change, which is an urgent and challenging task in current biology, depend upon 
comprehending the ecological performance of key biological functions under 
different thermal environments (Pörtner and Knust 2007, Buckley 2008, Huey et 
al. 2009, Kearney et al. 2009), and the mechanisms that underlie the thermal 
adjustments of the species (Helmuth et al. 2005, Angilletta 2009, Llusia et al. 
2013). 
 
The effects of temperature on anuran vocalizations 

Ectothermic animals are dependent on environmental heat sources and 
control their body temperature through external means (Papes and Ladich 2011). 
Compared to endothermic animals, they conserve relatively low metabolic rates. 
In general, the speed of all metabolic processes is influenced by the body 
temperature, which, for ectothermic organism, depends on the ambient 
temperature (Cossins et al. 1977, Salem and Omura 1998, Navarro 2002, 
Andersson 2003, Itoi et al. 2003). Ambient temperature affects various 
physiological processes, such as neuronal and muscular activities, including all 
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sensory systems of ectothermic animals (Ryan 1985, Stiebler and Narins 1990, 
Pires and Hoy 1992, Márquez and Bosch 1995). It is well known that temperature 
affects temporal acoustical parameters between anuran populations (Walker 1957, 
1975; Lörcher 1969, Schneider 1974; Gerhardt and Mudry 1980; Gayou 1984; 
Ryan 1985; Stiebler and Narins 1990; Pires and Hoy 1992; Márquez and Bosch 
1995; Llusia et al. 2013; Ríos-Franceschi et al. 2016). Thus, environmental 
temperatures beyond specific thermal thresholds may constrain physiological 
processes associated with sound production to such an extent that they inhibit 
calling behavior (Lörcher 1969, Schneider 1974, Walker 1975, Gayou 1984, 
Gerhardt and Huber 2002, Llusia et al. 2013). Prior to adaptation, ectotherms 
depend on complex thermal adjustment mechanisms to persist in new 
environments (Feder and Burggren 1992, Angilletta 2009, Llusia et al. 2013). 
Examining calling temperatures and their patterns of geographical and seasonal 
variation in dissimilar thermal environments (e.g., thermal extremes of species 
range) provides insights into the thermal breadth of calling activity of species, and 
the physiological and behavioral mechanisms that enable ectotherms to adjust to 
heterogeneous and changing thermal environments (Narins 2001, Llusia et al. 
2013).  

Studying contemporary populations may help reveal selective forces that 
have shaped and maintained, vocal traits (Gerhardt and Huber 2002), thereby 
providing a better understanding of inter- as well as intraspecific variation in 
anuran vocalization (Röhr 2013). Some of this variation may be attributed mainly 
to sexual selection in a strict sense (Wilbur et al. 1978, Gerhardt 1991, Márquez 
1995, Rosso et al. 2006, Röhr and Juncá 2013) and some to environmental 
limitations (e.g., Ryan et al. 1990; Ryan and Wilczynski 1991, Kime et al. 2000, 
Castellano et al. 2003, Röhr and Juncá 2013). For example, the transmission of a 
sound signal can be affected by its acoustic characteristics (Morton 1975, Marten 
et al. 1977, Ryan and Sullivan 1989, Kime et al. 2000) as well as by a variety of 
other factors such as habitat and vegetation structure (Wiley and Richards 1978, 
Sorjonen 1986, Ryan et al. 1990, Endler 1992), ambient noise (Feng et al. 2006, 
Preininger et al. 2007), climatic conditions (Wiley and Richards 1978), and height 
of vocalization perch (Wiley and Richards 1978, Wilczynski et al. 1989, Kime et 
al. 2000, Papes 2011). Furthermore, ambient temperature affects hearing in 
invertebrates and ectothermic vertebrates (Narins 2001, Papes 2011). Such effects 
have been tested in amphibians (Benedix et al. 1994, Egert and Lewis 1995, Long 
et al. 1996, Van Dijk et al. 1997) and reptiles (Eatock and Manley 1981, Smolders 
and Klinke 1984, Papes 2011). For these reasons, we analyzed the variation in 
temporal and spectral properties of these populations and how these variation 
affects anuran communication by the means of sexual selection. 
 

Methods 
The sound patterns of two common species of eleutherodactylid frogs 

Eleutherodactylus coqui Thomas, 1966 and Eleutherodactylus antillensis 
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(Reinhardt and Lutken, 1863) (Joglar 1998, Rivero 1998) (Figure 2), were 
recorded across Puerto Rico during 2016-2018. A total of 731 minutes from ten 
different sites (approximately 73.0 minutes for each site) were recorded and 
analyzed (Figure 3).  

 
Study localities 

From these results, six major localities were selected and documented: (1) 
Mayagüez (University of Puerto Rico, Mayagüez Campus’, Urban Forest. 
Elevation: 24.0 m), (2) Utuado (Río Abajo State Forest. Elevation: 426.0 m), (3) 
Arecibo (Islote, near Caño Tiburones Reserve. Elevation: 3.0 m), (4) Río Piedras 
(University of Puerto Rico, Río Piedras Campus. Elevation: 26.0 m), (5) Jayuya 
(Coabey, near Tres Picachos Reserve. Elevation: 996.0 m), and (6) Culebra Island 
(Mount Resaca. Elevation: 130.0 m). These sites were selected for their variation 
in elevation and climatic conditions. The other four sites were eliminated due to 
duplicity of data collection near two sites: Utuado (three sites) and Mayagüez (one 
site) area. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2. A. Eleutherodactylus coqui in Mount Guilarte (Adjuntas), Puerto Rico. B. 
Eleutherodactylus antillensis taking refuge in a bromeliad in Mount Resaca National 
Wildlife Refuge, Culebra Island. Photos by Alejandro Ríos-Franceschi.  
 
Sonic data collection 

We used in-site audio recordings (.WAV format). This technique allows the 
researcher to record a specific individual while calling, which adds specificity and 
precision to the research. For this task a hand-held recorder, H6 Sound Recorder 
from Zoom Laboratories® was used. Data was analyzed using Raven Pro Sound 
Analysis Software® from Cornell University’s Ornithology Laboratory. This 
software processes the field data and extracts information such as spectrogram, 
frequency, call length, power (dB), energy (dB) and amplitude. 

 
Morphometric measurements 

Five morphometric measurements were taken from each frog recorded: 
snout-vent-length (SVL), head diameter (from eye socket to eye socket), tibio-

A B 
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fibula length (TL), tympanic diameter (TYM) and weight. Measurements were 
taken using a digital caliper (Calipro®, 0.02 mm), for weight a spring scale 
(Pesola®, 100.00 g) and for body temperature a laser thermometer (Etekcity®, 
<100°C ±2.0°C). 
 
Statistical analyses of morphometric measurements 

A Student’s t-test was used to observe differences in morphometry (SVL, TL, 
TYM, head diameter, and weight), of the collected individuals. Furthermore, to 
estimate if there were differences in acoustic variables across populations, we 
used ANOVA. For the latter, we used the Shapiro-Wilks normality test (n = 10, p 
> 0.05) and Q-Q plots to test whether our data was normally distributed, reducing 
“type 1” error (Figure 4). Moreover, to examine which populations had 
similarities between these variables, the Fisher’s Least Significant Difference 
(LSD) test (Meier 2006) was used to estimate these differences by comparing 
mean values of acoustic variables in the ANOVA such as duration of each note, 
inter-note interval, and frequencies. As a result, these populations can be clustered 
according to their vocal characteristics. These analyses provide information about 
the possible plasticity or microevolution occurring in the species.  

 

 

Figure 4. Q-Q plot for normal distribution data using morphometric variables. A, 
Eleutherodactylus antillensis and, B, E. coqui. 

A 
 

B 
 



Life: The Excitement of Biology 7(2) ……………………………….….………………………… 88 
 

Sonic data collection 
In each site, two species of the genus Eleutherodactylus were recorded 

between 20:00–02:00. After encountering a calling male, we recorded 
individuals calls with a shotgun microphone (Zoom® SGH-6) data from 1.0 
m away (Figure 5) as proposed by Meenderink et al. (2010), Narins and 
Meenderink (2014). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Recording distance between the shotgun microphone and the target amphibian 
(1.0 meter). 

 
Every sample was analyzed using Raven Pro® software to extract the best 

recordings (e.g., highest signal-to-noise ratio). Each recording was an 
individual frog calling at the site. At that point, 30 recordings of one minute 
each within each site were selected and analyzed to determine the lowest 
frequency, highest frequency, power (dB), energy (dB) and call length of each 
individual note of the call of each species for a total of 150 recordings for E. 
coqui and 151 recordings for E. antillensis.  Sound spectrographs were used 
in identifying the species courtship notes, which vary depending on the 
behavioral context of the caller (e.g., another male or female nearby) (Figure 
6). Also, a rare form of a call was found during the analysis, this call was 
found only in one specimen of E. coqui in the Utuado area (Figure 7).  

 

Zoom ® 

1 meter 
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Figure 6. Eleutherodactylus antillensis sound spectrograph. A. Common call, “churí”, 
https://blaypublishers.files.wordpress.com/2019/11/figure5_a.wav . B. Aggressive trill call, “qui… 
qui… qui… qui… qui”,  https://blaypublishers.files.wordpress.com/2019/11/figure5_b.wav . 

A 
 

B 
 

https://blaypublishers.files.wordpress.com/2019/11/figure5_a.wav
https://blaypublishers.files.wordpress.com/2019/11/figure5_b.wav
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Figure 7. Eleutherodactylus coqui sound spectrograph. A, Aberrant call found in Utuado, 
Puerto Rico, https://blaypublishers.files.wordpress.com/2019/11/figure6_a.wav   B, Territorial 
call, “co…co… qui”, https://blaypublishers.files.wordpress.com/2019/11/figure6_b.wav  . 
 
Statistical analyses of sonic data 

The following statistical analyses were performed using (Info Stat®, 2012). 
An analysis of variance (ANOVA) was performed for Eleutherodactylus 
antillensis and for E. coqui to examine if the localities or different environmental 
factors investigated were associated to the differences in the variables of interest, 
such as lowest frequency, highest frequency and call length (n =150 for E. coqui 
and n = 151 for E. antillensis, p-value < 0.0001; each value represents a recording 
from a male). 

Furthermore, we wanted to test if the variables described above (“CO” “QUI” 
and “CHU” “RI”) were being affected in the same way in each locality. To do 
this, we used a Fisher’s LSD test with an alpha = 0.05. This test compares each 
variable independently with each locality and groups them with similar variances. 
This test helps us estimate which populations are most related. The “coqui” and 
“churí” calls were divided into two distinct notes. These notes were selected as 
independent and were analyzed as follows: highest and lowest frequency, energy 
(d), power (dB), call length (s) and amplitude. Also, the entire call length and time 
between each note was measured for each call (Figure 8). Additionally, linear 
regressions were performed to establish relations between body morphology (SVL) 
and frequency. 

A 
 

B 
 

https://blaypublishers.files.wordpress.com/2019/11/figure6_a.wav
https://blaypublishers.files.wordpress.com/2019/11/figure6_b.wav
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Figure 8. The image represents a spectrogram generated by Raven Pro®. The spectrogram 
shows the Eleutherodactylus coqui call and the arrows indicate the highest (A and C) and 
lowest (B and D) frequency of the “CO” and “QUI” note. This image is presented in color 
for it allows better visualization of the different spectral regions of the notes. The number 
“1” that appears on the upper left-hand corner of the panel represent the “click” counts that 
the software automatically places on the spectrograph. It is meaningless for the analyses. 
 

Results 
Morphology, body temperature, and acoustics of Eleutherodactylus coqui 

Common organisms, such as Eleutherodactylus coqui, can be more amenable 
for research owing to its widespread distribution and environmental diversity that 
can be suited for comparative analysis.  For this species, five localities were 
selected, from coastal areas to high elevation mountains. Morphological, body 
temperature, (Table 1), as well as acoustic data (Tables 2 and 3) were garnered. For 
acoustic data, ANOVA yielded significant differences between all populations 
across Puerto Rico (n = 150, p-value < 0.0001) for all variables, including a small 
difference for the highest frequency for the “CO” note (n = 150, p-value < 0.0004). 
Temperature data did not relate to any other variable. 

By analyzing these notes individually, we can assess small fluctuations in 
sound that can affect intraspecific communication. Calling behavior plays a key 
role in frog reproduction and defense of territory. The “CO’ note refers to a 
territorial call by which males defend their territory against other males. The “QUI” 
note functions as a call to attract females (Narins and Capranica 1978, Narins and 
Smith 1986). Additionally, as part of the analysis, total call duration was measured. 
Call duration (seconds), can be correlated to anuran metabolism. Individuals 
located in colder environments tend to have a slower call than its cohorts in higher 
temperatures due to changes in metabolic rate. Here, we measured the notes 
independently, “CO” and “QUI” and in their entirety, “CO QUI”.   

A 

B 
C 

D 
“CO” 

“QUI” 
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Table 1. Mean and standard deviation for morphological traits and body 
temperature of Eleutherodactylus coqui for localities with n = 30.  

Locality 
SVL 
(mm) 

TL 
(mm) 

Head 
width 
(mm) 

 
Tympanum 

diameter 
(mm)  

Body 
temperature 

(°C) 

Utuado 
28.35 

sd = 2.40 
15.25 

sd = 1.85 
11.62 

sd = 3.02 
2.25 

sd = 0.33 
21.21 

sd = 1.01 

Mayagüez 
28.21 

sd = 3.51 
12.83 

sd = 2.63 
11.33 

sd = 2.04   
1.63 

sd = 0.07 
21.65 

sd = 0.79 

Jayuya 
29.6 

sd = 2.67 
15.84 

sd = 2.50 
12.31 

sd = 1.79 
2.29 

sd = 0.42  
20.27 

sd = 0.92 

Arecibo 
21.00 

sd =3.67 
13.50 

sd = 0.92 
11.5 

sd = 0.04 
2.10 

sd = 0.01 
21.38 

sd = 0.85 
Río 

Piedras 
26.10 

sd = 2.20 
12.10 

sd = 2.25 
11.20 

sd = 0.64 
2.30 

sd = 0.46 
21.56 

sd = 0.95 
 
We analyzed the “CO” and “QUI” notes in five localities which include: 

Mayagüez, Arecibo, Jayuya, Utuado and Río Piedras. As shown in Figure 7, the 
note was analyzed by measuring highest and lowest frequency of the note in a 
spectrogram (96kHz, 24bit, 1 channel).  
 
 Advertisement “CO-QUI” note 

Beginning with the lower part of the “CO” note, the Fisher’s LSD shows three 
distinct populations denoted by letters in Table 2. Jayuya had the lowest mean 
frequency of all populations, followed by Río Piedras and Utuado (no significant 
differences) and finally Mayagüez and Arecibo with the highest frequency of the 
note (24.0 m and 3.0 m elevation respectively). Furthermore, the results of the 
upper part of the “CO” note also shows three distinct populations, although with 
less differentiation between them. Interestingly, Jayuya still has the lowest 
frequency but this time Río Piedras instead of Arecibo has the highest frequency. 
 
Courtship “CO-QUI” note 

For the lower part of the “QUI” note, the Fisher’s LSD shows four distinct 
populations, Jayuya being the lowest frequency and Río Piedras being the highest 
of the group. Also, the Fisher’s LSD shows that when we observe the upper part 
of the “QUI” note, Jayuya still has the lowest frequency and Río Piedras the 
highest (Table 2).  
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Table 2. Fisher's Least Significant Difference (LSD) for frequencies in 
Eleutherodactylus coqui in different localities in Puerto Rico. Dissimilar 
populations are denoted by different letters (n = 150).  

 
Note 

 
Parameter Locality 

Mean 
(sec) 

Populations Comments 

“CO” 
Lowest 

Frequency 

Jayuya 1.05 A Alpha = 0.05, 
LSD = 

0.09397, 
Error = 
0.0339, 
df = 145 

Río Piedras 1.27 B 
Utuado 1.31 B 

Mayagüez 1.48 C 

Arecibo 1.54 C 
 

“QUI” 
Lowest 

Frequency 

Jayuya 1.83 A Alpha = 0.05, 
LSD = 

0.12460, 
Error = 
0.0596, 
df = 145 

Utuado  2.24       B 
Mayagüez  2.33 B   C 
Arecibo 2.45             C   D 

Río Piedras 2.49                  D 
 

“CO” 
Highest 

Frequency 

Jayuya 1.89 A Alpha = 0.05, 
LSD = 

0.11618, 
Error = 
0.0518, 
df = 145 

Arecibo 2.01 B 
Utuado 2.03          B       C 

Mayagüez 2.11          B       C    

Río Piedras 2.14 C 
 

“QUI” 
Highest 

Frequency 

Jayuya 3.15 A Alpha = 0.05, 
LSD = 

0.12460, 
Error = 
0.0596, 
df = 145 

Utuado 3.44      B 
Arecibo 3.52      B    C 

Mayagüez 3.62             C    D 

Río Piedras 3.69              D 
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Table 3. Fisher's Least Significant Difference (LSD) for the length of 
independent notes an entire call duration in Eleutherodactylus coqui. Dissimilar 
populations are denoted by different letters (n = 150). Means with a common 
letter are not significantly different (p > 0.05). 

 
Note 

 
Parameter Locality 

Mean 
(sec) Populations Comments 

“CO” Duration 

Río 
Piedras 

0.08 A 
Alpha = 0.05, 

LSD = 0.01912, 
Error = 0.0014, 

df = 145 

Mayagüez 0.10 A 
Arecibo 0.12 B 
Jayuya 0.12 B 
Utuado 0.17 C 

 

“QUI” Duration 

Río 
Piedras 

0.09 A 
Alpha = 0.05, 

LSD = 0.01861, 
Error = 0.0013, 

df = 145 

Mayagüez 0.18 B 
Arecibo 0.18         B     C 
Jayuya 0.19         B     C 
Utuado 0.23                  C 

 
  Utuado 0.09 A 

Alpha = 0.05, 
LSD = 0.11618, 
Error = 0.0518, 

df = 145 

  Arecibo 0.12 B 

“CO” “QUI” 
Inter-
note 

interval 
Mayagüez 0.12        B    C 

  
Río 

Piedras 
0.13        B    C 

  Jayuya 0.14                C 
 

 
Total 

duration 
of call 

Utuado 0.31 
A 

Alpha = 0.05, 
LSD = 0.04173, 
Error = 0.0067, 

df = 145 

  Arecibo 0.39      B 
“CO QUI”  Mayagüez 0.42  B  C 

 Duration 
Río 

Piedras 
0.45 

           C  D 

  Jayuya 0.48           D 
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Call duration 
The area with the shortest territorial note, “CO”, was the population located 

in Río Piedras followed by the populations in Mayagüez, Arecibo, Jayuya, and 
Utuado with the longest note as expected. The Fisher’s LSD separates this 
populations in three distinct groups (Table 3). The courtship note, “QUI”, had the 
exact Fisher’s LSD order as the territorial note, being Río Piedras the shortest note 
and Utuado the longest. Also, the inter-note interval between the “CO” and the 
“QUI” notes was measured (Table 3). Additionally, Utuado and Jayuya had the 
shortest and longest inter-note interval respectively, leaving the coastal 
populations with intermediate pauses between the first two. Finally, the entire call 
was measured to observe which population had the shortest and the lowest call of 
all the populations studied. As expected, lower elevation populations such as Río 
Piedras, Mayagüez and Arecibo, had shorter calls than the populations located in 
higher mountainous areas like Jayuya and Utuado (Narins 1995) (Table 3).   
 
Morphology, body temperature, and acoustics of Eleutherodactylus antillensis  

As Eleutherodactylus coqui, E. antillensis is also widespread in Puerto Rico but 
it was thought that it could be found more commonly in disturbed low elevations areas. 
These characteristics make it possible for researchers to study the species without 
negatively affecting their populations. As with E. coqui, we analyzed the E. antillensis 
two-note call (“CHU- RI”), for frequencies and body morphometry (Table 4) in 
different populations across the island of Puerto Rico. For this species, Río Piedras 
was substituted for Culebra Island due to the absence of the species in recordings. 

 
Table 4. Mean and standard deviation for morphological traits and body 
temperature of Eleutherodactylus antillensis for localities with n = 30.  

Locality 

 
SVL 
(mm) 

 
 

TL  
(mm) 

Head 
width 
(mm) 

Tympanum 
diameter 

(mm) 

Body 
temperature 

(°C) 

Utuado 
26.52 

sd = 1.01 
12.47 

sd = 0.66 
9.88 

sd = 1.07 
2.01 

sd = 0.06 
24.70 
1.12 

Arecibo 
27.66 

sd = 0.89 
10.03 

sd = 0.33 
10.75 

sd = 0.54 
3.0 

sd = 0.78 
24.66 

sd = 0.45 

Mayagüez 
27.28 

sd = 1.13 
10.03 

sd = 0.09 
12.00 

sd = 1.50 
2.28 

sd = 0.16 
21.50 

sd = 0.65 

Culebra 
23.45 

sd = 1.42 
11.17 

sd = 1.89 
9.47 

sd = 1.26 
1.73 

sd = 0.56 
22.65 

sd = 0.66 

Jayuya 
22.8 

sd = 1.34 
10.30 

sd = 1.37 
8.70 

sd = 1.99 
2.40 

sd = 0.22 
22.18 

sd = 0.89 
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 “CHU-RI” note 
Frequency measurements from the lower part of the “CHU” note spectrogram 

shows a lower frequency on the populations found in the mountainous region, 
being the Jayuya population the lowest. On the other hand, the Culebra population 
had the highest frequency of all (Table 5). Also, with the latest population, the 
Fisher’s LSD acknowledged this population as a separate group. Moreover, 
results from the upper part of the “CHU” note spectrogram shows an interesting 
pattern displaying the highest and lowest frequencies belong to the populations in 
high elevations (e.g., Jayuya and Utuado, respectively) and the intermediates to 
the lower elevation localities (e.g., Mayagüez, Culebra, and Arecibo). 

 
“CHU-RI” note 

Within the call, the “RI” note is something that this species can modulate to 
emit the unmistakable “QUI, QUI, QUI…” thrill call that Ovaska and Caldbeck 
(1997) described. The sound spectrogram presented similarities with the first note 
such as, frequency patterns with populations. For example, the high elevation 
populations still have the lowest frequency of all populations and as we go down 
in elevation, their frequencies get progressively higher (Table 5). 

 
Table 5. Fisher's Least Significant Difference (LSD) for frequencies in 
Eleutherodactylus antillensis. Dissimilar populations are denoted by different 
letters (n =151). Means with a common letter are not significantly different (p 
> 0.05). 

 
Note 

 
Parameter Locality 

Mean 
(sec) 

Populations Comments 

  Jayuya 1.26 A 
Alpha = 0.05,  

LSD = 0.09305, 
Error = 0.0335, 

df = 146 

  Utuado 1.31 A 

“CHU” 
Lowest 

Frequency 
Arecibo 

1.54 
B 

  Mayagüez 1.56 B 
  Culebra Is. 1.87 C 

 
  Utuado 1.95 A 

Alpha = 0.05, 
LSD = 0.12652, 
Error = 0.0619, 

df = 146 

  Jayuya 1.95 A 

“RI” 
Lowest 

Frequency 
Mayagüez 

2.26           B 

  Arecibo 2.32           B 
  Culebra Is. 2.57                   C 
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  Jayuya 1.79 A 
Alpha = 0.05,  

LSD = 0.16422, 
Error = 0.1042, 

df = 146 

  Mayagüez 2.23 B 

“CHU” 
Highest 

Frequency 
Culebra Is. 

2.26 
B 

  Arecibo 2.26 B 
  Utuado 2.58 C 

 
  Jayuya 2.93 A 

Alpha = 0.05, 
 LSD = 

0.18152, 
Error = 0.1274, 

df = 146 

  Mayagüez 3.14 B 

“RI” 
Highest 

Frequency 
Arecibo 

3.20 
B 

  Culebra Is. 3.32 B 
  Utuado 3.53 C 

 
Call Duration 

Examination of the duration of individual notes (CHU-RI), inter-note 
intervals and total call duration demonstrates that populations at lower elevations 
have shorter calls than populations at higher elevations. More importantly, 
populations such as Utuado and Jayuya appear to be a separate group from the 
others (Table 6). 

 

Table 6. Fisher's Least Significant Difference (LSD) for the length of 
independent notes an entire call duration in Eleutherodactylus antillensis. 
Dissimilar populations are denoted by different letters (n = 151). Means with a 
common letter are not significantly different (p > 0.05). 

 
Note 

 
Parameter Locality 

Mean 
(sec) Populations Comments 

  Mayagüez 0.04 A 
Alpha = 0.05, 

LSD = 0.04370, 
Error = 0.0074, 

df = 146 

  
Culebra 

Is. 
0.08 A      B 

“CHU” Duration Arecibo 0.08 A      B 
  Utuado 0.10          B        C 
  Jayuya 0.13 C 

 
  Mayagüez 0.07 A Alpha = 0.05, 

LSD = 0.04954, 
Error = 0.0095, 

df = 146 

  Arecibo 0.09 A      B 

“RI” Duration 
Culebra 

Is. 
0.10 A      B 
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  Utuado 0.14          B        C 
  Jayuya 0.22 C 

 
  Mayagüez 0.03 A 

Alpha = 0.05 
LSD = 0.05133 
Error = 0.0102 

df = 146 

  Arecibo 0.04 A 

“CHU” 
___ “RI” 

Inter-
note 

interval 

Culebra 
Is. 

0.04 A 

  Utuado 0.04 A 
  Jayuya 0.15 B 

 
  Mayagüez 0.12 A 

Alpha = 0.05 
LSD = 0.08782 
Error = 0.0228 

df = 128 

  Arecibo 0.15 A 

“CHU RI” 
Total 

duration 
of call 

Culebra 
Is. 

0.18 A 

  Utuado 0.28 B 
  Jayuya 0.50 C 

 
Discussion 

Vocalization evolves as the result of a variety of selection pressures in the 
environment (Drewry and Rand 1983). Eleutherodactylus is one of the few genera 
of anurans that can use the same notes to engage in courtship and advertisement 
calls rearranging the notes (Narins and Capranica 1978, Stewart and Rand 1991, 
Stewart and Bishop 1994). A study conducted on the genus Eleutherodactylus in 
the main island of Puerto Rico showed that E. antillensis has a high activity peak 
call during midnight and low activity at dusk and dawn (Drewry and Rand 1983). 
In Culebra Island, the pattern of activity was different as this species was more 
active during dusk and dawn (Ríos-Franceschi et al. 2016). These differences may 
function in defense of a calling territory to other males (Ovaska and Caldbeck 
1997). In the case of Culebra Island, the frequency of calls by E. antillensis was 
broader in range compared to its conspecifics at El Yunque Rain Forest (Drewry 
and Rand 1983), being 1.05 kHz higher (Ríos-Franceschi et al. 2016). It is known 
that frogs can modify the amplitude of the call depending of the environment, 
depending on how open or closed is their habitat space and the intensity of 
interspecific competitors (Drewry and Rand 1983, Lopez et al. 1988). For visual 
reference, see Figures 9-10 and 12.  
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Figure 9. Representative waveforms (amplitude vs. time) of advertisement calls of 
Eleutherodactylus antillensis in four localities in Puerto Rico. A, Arecibo; B, Jayuya; and 
C, Río Piedras. Each plot was generated using Raven Pro1.5®, Cornell University. 
 
 
 

A 
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C 
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Figure 9 (continuation). Representative waveforms (amplitude vs. time) of advertisement 
calls of Eleutherodactylus antillensis in Puerto Rico. D, Utuado. Each plot was generated 
using Raven Pro1.5®, Cornell University. 
 

Eleutherodactylus antillensis. Spectrographs showed that Eleutherodactylus 
antillensis frogs usually trill (aggressive calls), which are used in defense of a 
territory (Ovaska and Caldbeck 1997) when E. coqui is present.  It is well known 
that these two species share the same habitat, thus they may compete for the same 
resources. Narins (1995) stated that frog calling assemblages can exhibit time-
sharing on a millisecond time scale or on a diel time scale, restricting their calling 
to particular times of the day (Villanueva-Rivera 2014, Ospina et al. 2013). 
Eleutherodactylus coqui does not seem to be occurring in Culebra Island because 
both species were recorded calling at the same time in almost every single 
recording from Culebra Island. On the other hand, at the other data collection 
localities there seems to be evidence of time-sharing (Narins 1995) between 
Eleutherodactylus antillensis and E. coqui.  

 

D 
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Figure 10. Representative waveform of Eleutherodactylus antillensis in Puerto Rico. A. Amplitude
vs. time. B. Spectrograph of “thrill” call.

A 

B 
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Environmental factors such as, humidity, temperature, elevation and 
body size are known to affect the call frequencies and rates with which a 
male can communicate. By examining populations across several localities 
(e.g., in this study, all secondary forests, Figure 15) using an elevation 
gradient, we can analyze these factors. For example, a recent study testing 
the hypotheses surrounding vicariance and dispersal using mtDNA 
sequences from E. antillensis, found support for a hypothesis of colonization 
of the islands east of Puerto Rico from sources located in eastern Puerto 
Rico during the penultimate and last glacial period.  This occurred when a 
land bridge united the Puerto Rican Bank, thus dividing populations in 
different haplotypes (Barker et. al. 2012), probably contributing to 
speciation. Using linear regressions, we found that the size (SVL) of E. 
antillensis frogs tends to be negatively correlated to call frequency (kHz) 
although this trend is not statistically significant. High “CHU” and “RI” 
frequencies were significantly correlated with SVL, the larger the frog, the 
lower the frequency, but these correlations were not considered strong (R2 
= 0.48 and R2 = 0.52, respectively, Figure 11). The reason could be to low 
frog collection in each locality (n = 30, per locality). 

As is known, the larger the organism, the lower its call frequency, but 
in this case, Arecibo (Puerto Rico), is located nine meters above sea level 
and, as expected, their population had one of the highest sonic frequencies 
of all, but more importantly, it had the largest individuals of all populations 
(mean SVL = 27.66 mm, n = 30). Morphological features such as the size of 
the larynx may play a key role in frequency production in each population 
(Ríos-Franceschi, unpublished data). Also, for E. antillensis spectrogram 
analysis revealed highest energy (dB) in Jayuya, Puerto Rico with a mean 
dB = 132 and max dB = 170, n = 10. 

If we combine the ethological and morphological data collected, we can 
suggest that each population of E. antillensis has a different accent, in such 
cases, some populations vary so much that we could speculate that sexual 
selection could be in play. This suggests that selection has likely favored the 
evolution of a specialized neural auditory mechanism for extracting time and 
frequency information from such calls (Hall 1994, Richards 2006). 
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Figure 11. Linear regressions of E. antillensis. A, SVL* High frequency “CHU” note. B, 
SVL* High frequency “RI” note.  
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Figure 12. Representative waveforms (amplitude vs. time) of advertisement calls of 
Eleutherodactylus coqui in five localities in Puerto Rico. A, Arecibo and B, Jayuya. Each 
plot was generated using Raven Pro1.5®, Cornell University. 
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Figure 12 (continuation). Representative waveforms (amplitude vs. time) of advertisement 
calls of Eleutherodactylus coqui in Puerto Rico. C, Río Piedras; D, Utuado; and E, 
Mayagüez. Each plot was generated using Raven Pro1.5®, Cornell University. 
 

If we compare the mountainous populations, Utuado and Jayuya, they can 
call at the same lower frequencies of both notes (e.g., CHU-RI), but the population 
located in Utuado has a higher frequency range. Furthermore, the Utuado 
population has shorter calls than the Jayuya population. We can assume that the 
Utuado and Jayuya populations can communicate using different accents. 
However, if we compare the populations at a lower elevation locality, such as 
Figure 11. Linear regressions of E. antillensis. A, SVL* High frequency “CHU” note. B, 
SVL* High frequency “RI” note.  

E 

D 
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Frogs from Culebra Island and Jayuya are so sonically dissimilar (Figure 13) 
that they may communicate in different spectral and temporal properties that they 
may not recognize each other if they are placed together, promoting sexual 
divergence and isolation, which could lead to speciation. Research on anuran 
papillae demonstrates spectral sensitivity to distinct frequencies (Meenderink et 
al. 2010); in other words, each isolated population varies in spectral and temporal 
properties in which case, the auditory papillae can be fixed to specific frequencies. 
This can be tested by doing playbacks in every population to observe intra-sexual 
and inter-sexual response. 

 

Figure 13. Total frequency range of E. antillensis at each locality (elevation, in meters, 
above sea level).  
 

Eleutherodactylus coqui. For the call frequencies of E. coqui, the population 
in Jayuya, seems to emit territorial and courtship call at different frequencies that 
frogs at the other localities analyzed. This is important because this species has 
specific frequency sensitivity, so the probability that the population in Jayuya can 
communicate effectively with any other population analyzed in this research is 
low (Figure 14). This hypothesis has to be tested by playbacking recordings in 
each location. 

 

 
Figure 14. Total frequency range of E. coqui at each locality (elevation, in meters, above 
sea level).  
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For the acoustic communication to be successful, the individuals must be 
sensitive to spectral and temporal signals in the call (Gerhardt and Schwartz 2001, 
Meenderink et al. 2010). Spectral and temporal properties of a call can be affected 
by temperature and morphology, such as body size (Littlejohn 1977, Narins and 
Smith 1986). The call frequency in E. coqui varies with an altitudinal gradient, 
rather than temperature (a 6°C decrease every 1,000 meters, El Yunque National 
Forest), SVL was suggested to be the reason of these variations in calling 
frequencies within the altitudinal gradient in El Yunque National Forest 
(Meenderink et al. 2010). Linear regressions testing SVL and frequencies 
revealed a weak (R2 < 0.55) negative correlation between the two variables, but 
none was statistically significant, probably caused by low data collection. 
Background noise such as the El Yunque National Forest can influence amphibian 
diel calling patterns and temporal properties of their calls in presence of sound 
interference (Narins 1982, Narins and Smith 1986). For them, to detect calls in 
noisy environments requires the appropriate sensitive mechanism (Ryan 1986, 
Meenderink et al. 2010). Also, for E. coqui spectrogram analysis revealed highest 
energy (dB) in Utuado, Puerto Rico with a mean dB = 127 and max dB =155, n = 
10. 

Intraspecific divergence in mating signals, whether generated by sexual 
selection, pleiotropic effects, drift, or other evolutionary processes when 
correlated with divergence in female preference can lead to reproductive isolation 
and speciation (Richards 2006). Females often maintain this isolation through 
selection of male calls. Furthermore, anurans adapt to these environmental 
changes by modifying their behavior and possibly their inner ear anatomy to 
adjust to these changes in acoustical signals. Although ear anatomy is an 
important part of signal reception, this paper has focused on signal production. 
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Figure 15. An example of a secondary forest where this study was conducted.  These photos 
depict one of the sites located in the Rio Abajo State Forest, Utuado, Puerto Rico. A. Before 
Hurricane Maria  hit Puerto Rico (September 20, 2017). B. Same site after the vegetation 
was destroyed by the hurricane. More information on the devastation caused by Maria to 
Puerto Rican forests can be found here: 3-D Views of Puerto Rico's Forests After Hurricane 
Maria, available in this link: https://www.youtube.com/watch?v=QeGFaqwDY3s 
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